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INTRODUCTION 

The purpose of this Investigation Is to analyze the 

effects of axial and transverse acceleration on bearings of 

various shapes which may be suitable for use In spring driven 

timer mechanisms.    The Investigation considers the feasibility 

of each bearing In terms of loads,  stress levels,  and friction 

torques and      Indicates appropriate design and analysis tech- 

niques. 

The conventional timer consists of a mainspring as an 

energy source,  a speed Increasing set of spur gears and pin- 

Ions on parallel shafts,  and an escapement controlled by an 

oscillating balance wheel.    The case of the timer Is fastened 

to the projectile and accelerations are Imparted  to the gears 

and shafts through the bearings under Investigation.     The usual 

orientation of a timer Is with Its shafts parallel to the axis 

of the projectile and with the center of the  timer housing 

on the axis of symmetry. 

Timer bearings are ordinarily subjected to two differ- 

ent types of loading.    The first,  of short duration,  results 

from acceleration while In the gun tube and actü approximately 

parallel to the axes of the shafts.    During this Interval 

the mechanism may not be required  to operate,  but It must be 

able to function properly as soon as the axial  load drops off. 

The second  type of loading Is caused by a radial acceleration 

of Increasing magnitude while the mechanism Is In the gun 

tube and of approximately constant magnitude during the flight 

of the projectile.    The mechanism is required  to function pro- 

perly while under the latter loading. 
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The main part of this report la divided Into four sections. 

In the first tectlon bearings which can withstand axial load 

are analyzed.  Ten different combinations of snape and pressure 

distribution are considered. Since It Is likely that the mini- 

mum bearing size will be limited by axial load capacity, formulas 

are derived in each case expressing the required bearing size 

as a function of its pertinent /eometric parameters and the dl- 

mensionlefnj a.o.cil oad. 

These expressions can te used in design in two ways. First, 

if a particular geometry has been decided upon, they can be used 

to find the inlniraur.i bearing size  as determined by axial load ca- 

pacity.  Second, they can be used to see the effects of the var- 

ious geometric par; meters upon bearing size as determined by axial 

load, and so will ;;erve as a guide in choosing the most suitable 

shape and parameters. Throughout this section typical numer^a] 

values of load, material properties, and geometric parameters 

are used in the fo milas developed in order to give a physical 

idea of typical sl.es. Since some of the formulas developed are 

represented by fairly complicated equations, many of these equa- 

tions are plotted .n order to determine the general trends of the 

curves and to facilitate comparisons between the cases. Since 

operatior  while under axial load may be required, expressions 

for the friction t )rque are also oeveloped for each of the ten 

cases.  Again typinal numerical values are calculated in order to 

give an idea of th? orders of magnitude of these quantities and to 

compare the relative merits of the ten cases. 
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In the second section of this report the bearings of Section I 

are analyzed under transverse load. Because flat bearings can 

withstand axial but not transverse load and because under trans- 

verse load one normal pressure distribution Is much more reason- 

able than most others, the ten cases of Section I reduce to four 

distinct cases. They are: spherical bearings (solid and hollow), 

torroidal bearings conical bearlncs, and bearings with latitude 

circle line contuc .. In each of these cases formulas for required 

bearing size as a Tunctlon of geometric parameters and applied 

transverse load are derived. Again typical numerical values are 

calculated and it is found that with the load magnitudes u:;ed here 

as typical, either axial or transverse load capacity may fix 

the minimum bearing size. The one that controls depends not only 

upon the ratio of maximum transverse to axial load, but also 

upon the type of bearing and the values of its geometric para- 

meters. Again there formulas may be used in two ways - for cal- 

culating numerical sizes once the geometry has been fixed, and for 

evaluating the effects of the various geometric parameters. Since 

operation while uncer transverse load is a definite requirement, 

expressions for the friction torque and typical numerical values 

are calculated in each of the four cases. 

Journal bearirgs are investigated in the third section of 

this report. These bearings could be used in conjunction with 

one or two beariiigE that have axial load capacity. An approxi- 

mate method Is developed for calculating contact stresses in terms 

of transverse load, bearing size, and meridian radius of cur- 

vature. In addition expressions for friction torque are devel- 
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oped.    Again typical loading Is considered and numerical values 

are calculated for this loading. 

In the  fourth section of  the report two topics are Investi- 

gated.    They are the estimation of typical loading and the Inves 

tlgatlon of the feasibility,  for this application, of sharp 

vee-Jewel bearings as used In precision Instruments and watches. 
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SECTION I 

BEARINQS WITH AXIAL LOAD CAPACITY 

There are three classea of bearing of this type.    They 

may be described ae bearings with full contact,  bearings with 

thin ring contact,   and bearings with theoretical line contact. 

A bearing from each of these classes is sketched in Figures 

1 to 3. 

A study of Figures 1 and 2 indicates that the surfaces 

are Initially conTorraing - that is,  in the unloaded condition 

there Is theoretical area contact.    In addition,  in order to 

get side thrust capability,  and so eliminate the main disadvan- 

tage  of vee Jewel bearings,   (see SECTION IV),  contact occurs 

at radii that are of the order of magnitude of the shaft radius. 

This Increases the effective friction radius above that of vee 

Jewel bearings and so gives the  (unavoidable) penalty of 

higher friction torque.     However we want numerical values of 

these parameters in order to evaluate an optimum design. 

The various shapes will be considered  only under axial 

load  in order to detemiine the required size.    Just as for the 

vee Jewel bearing it is likely that the initial axial accelera- 

tion will fix the size.     Various normal pressure distributions 

will be conslderec  for each shape.    In addition friction torques 

will be computed to see what would happen if the bearings have 

to operate during the axial acceleration period.    In SECTION II 
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FIGURE  I FIGURE  II 

SPHERICAL BEARING,   CONVEX TORROIDAL BEARING,   CONVEX 

SHAFT.   AND FULL CONTACT SHAFT,   AND  THIN  RING  CONTACT 

FIGURE  III 

SPHERICAL-CONICAL BEARING. CONCAVE 

SHAFT, AND THEORETICAL LINE CONTACT 
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these bearings will be consicerea under transverse loads only; 

friction torques ?nd bearing contact stresses will be computed 

in addition to other quantities of interest for a particular bear-

ing. 

Case 1 FLAT BEARING - WITH AND WITHOUT A HOLE - UNIFORM 

PRF.3SURE DISTRIBUTION -• S:ZIFG UNDER AXIAL LOAD 

Dei'inmg 6 by 

(1) B = ̂  
ri 

we get 

^2) q° ~tS* r. 2 ° n(r0 - V > 
and 

< 3 ) 

where r, and r are the inner and outer radii in inches, q l o ° 
i s the maximum oe r r ing p r e s su re i n p s i , and P i s the a x i a l load 

in l b . I t i s r e a c i l y observed t h a t the mirimura s i z e bear ing i s 

the one wi th fl « (no h o l e ) . Thus we d e f i n e a r e f e r e n c e o u t -

s ide r a a i u s as 

p 1 /2 
^ v ro re f ' '-rTq^^ 
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FIGURE TV 

FLAT BEARING 

WITH A HOLE 
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. (- 

and  a dlmenslonless   relative bearing size  D ae 

(5) D =        rc 

^o^ref 

and ^et for the  solid flat bearlnt, 

(6)     D - 1 

and for the hollow flat bearing 

1/2 
v *- 

R _     i 

The  range of  ^  of interest Is from a  = o3 for the  solid  flat 

bearlrv to about   B  = r /(r    -  . Ir  ) ^ 1.1  for relatively  thin 

bearings.     (Anything  thinner w aid  require ey.cessivc   tolerances.) 

The bearlr^ relative  size D = r /(r  )     f  of equation   ^7)  vs  1/p 

is  shown In Fig.   3 on Pa^je 10 arid  tabulated  ir. Table  1  on 

Pa^e  14.    It can be  seen that the  thinnest section that would 

be  used   (9 w 1.1)  requires about 2.3  times  the outside diame- 

ter of a no-hole  section for the  same   load  P and  design normal 

pressure q, .     In order to investigate   typical sizes  take 

P       lcal -  15.93  lb.     (See Pa-e   114  of SECTION IV.)     It  Is 

more difficult to estimate a ,':ocd  design value  for q  .     The value ^o 

chosen should be below q    ^ 285,000 psi   (Page  106)  since  there o 

is area contact in the undeformed position now and the likeli- 

hood is high of having much greater than average pressure at 
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local irregularltiea.    Thus use qo = 242,000 pal  (Page 95) 

for the relatively thin sectlone and q    » 175,000 pal  (say) 

for others. 

Then for thin sections 

1/2 1/2 

u 

and for th-"k sections 

1/2 1/2 

The reference shai't dlair.eters are then 

and 

^do^ref    rain =  '00^2 ln-   for thln rlr16 contact 

(d  )  ^^      „v -   .0108 In.   for larger contact area, o ref.,   may. 0 

For a ratio of r^/r   « 1/R « .6,   the oatside diameter would 

be « 1.25 x .0108 « .0135 In.   (nee Table  I), while for ri/ro « .9, 

the outside dlame'.er would be ^2.3 x  .0092 =  .0212 iu.   (The 

hlcher design stress is used for the relatively thinner contact 

area.) 
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Case 2      FLAT BEARINQ - LINEAR PRESSURE DISTRIBUTIONS- 

SIZING UNDER AXIAL LOAD 

For the relatively thin sections the uniform pressure dis- 

tribution Is quite reasonable.     For the thicker ones,  in order 

to prevent comers from digging in,  the bearings could be made 

somevhat as shown In the exaggerated  sketch on Page 13,   (Fig- 

ure 6).    The  small axial clearance shown prevents the outside 

corners from takln; all the load.    When the load is applied the 

two surfaces deform into contact.    The reßulting normal pressure 

distribution then '5rops off with increasing radius. 

Thus consider the Trapezoidal Distribution with parameter n 

shown in Figure  7.    Here  the normal pressure is given by 

r - r., 
(8) q{r)   = q    - nqo ,.    , ^ 

W^en T) « o,   this reduces  to the uniform distribution;   and when 

ri = 1,  it reduces  to a triangular distribution.    The equation 

of axial equilibrium elves 

^r = ro ^ro 

(9) P = f d? « f     (2TTrdr)(qo)(l  - rrj, - I1-) 

Integrating,   usi;-^ the definition of bearing relative  size D 

(Equation 5),   and  simplifying gives 
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FIGURE VI 

Small clearance 
that is taken up 
elastically as 
the axial load 

, is applied 

EXAGGERATED VIEW OF A FLAT BEARING 

BEFORE THE AXIAL LOAD IS APPLIED 

FIGURE VII 

~r° 1 
i H— 

TRAPEZOIDAL LOAD DISTRIBUTION 

(i-n)qc 

i 

TO, 

q(r) FOR A FLAT BEARING 
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:u     ,    1.1... >, t  y-  i p  r i  xoi, 

2 '     ^ 
(io) D(e,r,)   = r-g -L ^ 

Comparlnc this to Equation 7,   Page 9 shows  that It reduces to 

that equation for n = o.     The quantity  (l  -f- g - 2ß )  Is zero 

for  p  =  1   (the smallest value of fl) and gets smaller  (more 

negative)  for increaslrvr  8.    Thus for any positive n between 

0 auid   1  the denominator gets  less and D increases as expected. 

Some  tabulated values are given in Table  1 below. 

Table  1 

BEARING RELATIVE SIZE D AS A FUNCTION OF BEARING RADIUS RATIO a 

FOR THREE LINEAR LOAD DISTRIBUTIONS 

Uniform Trapezoidal triangular 

i D_Jj}_=i o^ iJ.'n = .5) D^ U-i) 
oo 1.000 1.2252 1.732 

10 1.005 1.220 1.670 

5 1.021 1.225 1.640 

2 1.062 1.261 1.642 

2 1.153 1.360 1.732 

5/3 1.250 1.463 1.848 

5/4 1.670 1.940 2.40 

10/9 2.295 2.66 3.23 
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These curves are plotted In Figure 5 on Page 10.    For typical 

flat bearing al^eb as üeter-mlned by axial load we have Tor 

ß - 1.66?    (1/8 •» .6) 

uniform    (ri - 0) D ^ 1.25 

outside v  o'rer 

Trapezoidal    (TI =  .5) D = 1.46 

outside %  o'ref 

Triangular    (n = l) D = lf85 

d        ^    => D(d   )    ^ = .0108 D =  .020 In. outside v  o'ref 

and for B = 1.11    (l/ß =  .9) 

Uniform    (n = 0) D « 2.23 

d        ..^    = D(d   )     f  = .0092 D «   .0207 in. outside ^  o'rel ^ 

Trapezoidal    (^ =  .5) D = 2.66 

d    ,. . ,    « D(d   )v_r =  .0092 D =  .0244 In. outside ^   o'ref 

Triangular    (n * l) D = 3.28 

doutBlde = D^o)ref = '00^ D =  •C302 1*- 

(söe Page 11 for (d0)ref) 
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The  trapezoidal distribution with TI =  .5 seenifl moat reasonable. 

Thus  to summarize, we have for flat bearings with a trapezoi- 

dal distribution with TI -  .5 and for P = 15.95 lb. axial load 

(Page  114)^  a design bearlnc stress qo » 175,000 psl  (Page II), 

and a radius ratio l/ß = v\/v
0 " '&$  an outside diameter of 

d^ +-0i^a = .0158 in.    Also for a thin section flat bearing with 
OU C S10 s 

the radius ratio now 1/P  = v./r   =  .9 and  the design bearing 

stress now qo = 242,000 psi   (Page 11),  we  have do tslde =  .0244 in 

Both of these sizes are  reasonable. 

Case  3      FULL SPHERICAL BEARING- UNIFORM NORMAL PRESSURE 

DISTRIBUTION  - SIZING UNDER AXIAL LOAD 

The  radius of the  spherical tip Is R,   r    is the outside 

radius of the bearing,  a is  the total half angle  subtended by 

the bearing,  o is a variable angle,  and r la a variable radius 

as  shown in Figure 8.     We have 

(11) sine «= r/R 

and 

r 
(12) sina * -j^ 

16 - 
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FIGURE /III 

FULL SPHERICAL BEARING WITH 

UNIFORM LOAD DISTRIBUTION 

FIGURE IX 

de 

FULL SPHERICAL BEARING WITH 

COSINE LOAD DISTRIBUTION 

- 17 -



Jiaciv.v T^linolOjiy Coi'pcr^t. Ion 

Since the normal pressure distribution Is hydrostatic (uniform). 

Its axial resultant equals that of the same uniform pressure 

distribution over the flat bearing of equal Inside and outside 

diameter. Thus the bearing size Is the same as for Case II 

with ß » • and r\ ~ 0  (Page 14). 

Case k      HOLLOW SPHERICAL BEARINQ - UNIFORM NORMAL PRES- 

SURE DISTRIBUTION - SIZING UNDER AXIAL LOAD 

As noted directly above, the sizes are the same as for the 

flat bearlr^ with the same radius ratio 3 » r /r. and TI = 0, 

(Page 14). 

Case 3  FULL SPHERICAL BEARINQ -  COSINE NORMAL PRESSURE 

DISTRIBUTION - SIZINQ UNDER AXIAL LOAD 

Here q(0), the normal pressure, la taken as 

(13)     q(9) « q0 cose  (0 < e < a) 

The equation of axial equllbrlura gives (See Figure 9) 

9 = a 

;9 

o ■- a, 

(14)     P = r dP = f    (RdG)(2TTr)(q^ cose) (cose) 
JG = 0 0 

Using the definition of the bearing relative size D, elimina- 

ting R and r with equations 11 and 12, and integrating gives 

~ 18 - 
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ro^l/2 -   sin-     1 
(15)     D(a) = [^ ^rTT72J 

^ J    (1 - cos-^i) 

AB a check, for small values of ^ this becomes 

a3 

(16)      D(a) = [i1 

""~~~   " " — — '     1/2 
ri - (1 - ft- +  ...) 1 
M C J 

nn1/2  a •• ü + •• • 
Ti a - ... • 

which has the llrnitinti value one. Since small a means essen- 

tially a solid flat bearing with a uniform load distribution, 

this checks with the results for a flat bearing with B = • 

and r) = 0. 

A tabulation of this function and a plot of It are ^Iven 

In Table 2 and Figure 10. 
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Table 

BEARING  RELATIVE SIZE D VS BEARING  ANQLE g  FOR FULL SPHERICAL 

BEARINGS WITH A COSINE LOAD DISTRIBUTION 

Dbi 

C 1.000 

10° 1.002 

20° 1.022 

30° 1.036 

45° 1.079 

60° I.136 

90° 1.225 

Since practical bearing ancles would have 90° as an upper 

limit arid since the cosine distribution Is reasonable, a solid 

spherical (confomlng) bearing is at most 1.225 times the dia- 

meter of a solid flat bearing for the same axial load and de- 

sign stress. 
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FIGURE X 
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Caae 6  HOLLOW SPHERICAL BEARING WITH COSINE NORMAL PR£S- 

SURE DISTRIBUTION - SIZING UNDER AXIAL LOAT 

Equation 14 holds with the lower limit replaced by a, and 

with q replaced by q /coam.,  where r. and a^ are related by 

(17)     sin a1 = ^ 

The  integrated  equation becomea 

r        -V2 
„a«l/2 alna  ' cosa. 

(is) D(a,aj = \r i- 

whe 

r   3 3 -1/2 
I cos a^   - cos-i 
L 1 J 

re a^ and the radius ratio P are related by 

w      B-l^ 

Some values of D vs.   D and m are  tabulated below  in 

Table 3 and plotted  in Figure  5. 
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Table   3 

BEARINQ RELATIVE SIZE D VS RADIUS RATIO Q FOR POUR BEARING 

ANOLLS a 

0°  {This corresponds to the flat bearla with a uniform 

distribution of pressure) 

a. D(a, aj) - D(a,~) 

• 0 1.000 (Solid flat brv:) 

10 0 1.005 

3 0 1.021 

3 0 1.062 

2 0 l.o3 

5/3 0 1.250 

5/4 0 1.670 

10/9 0 2.295 

:M - 
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= 30 
al D(a,  a,  ° D(a^) 

10 

5 

3 

2 

5/3 

10/9 

0.00° 

2.86° 

5.73° 

9.60° 

14.48 

17.47C 

23.60c 

G 

26.7 
0 

'J 

1 0^6 (Solid  sph.  bsL) 

1.039 

1.056 

1.101 

1.186 

1.283 

1.688 

2.29 

a = 60° 
DUJL a.^  ' ^ia^) 

a. 

CD 

10 

0.00° 

4.96° 

1.13b 1 Solid   sph.  brg.) 
Pace 20 

1.140 

5 J.990 1.159 

3 IO. n 1.198 

2 25.7° 1.293 

5/3 31.3° 1.390 

5A 43.7° 1.808 

10/9 en    o0 
51.2 2.40 
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a  ^  ^ B 04 D(a1 ix)  « D(a1   fl) 

0.00° 1.^23 

5.73° 1.232 

11.sa0 1.232 

1Q./!R0 1.300 

30.00° 1.^29 

36.8° 1.332 

53.2° 2.04 

64.2° 2.82 

1.223 ^oilu   aph.  br;J 
Pa^e  20 

10 

5 

3 

2 

5/3 

10/9 

Case  7      HOLLOW TORROTDAx. BEARJNQ  - UNIFORM NORMAL PRESSURE 

DISTRIBUTION  -  SIZING UNDER AXIAL LOAD 

For this case 

(20) q{0)   = qo 

r - r. 
(21)    =» slnn 

R 

r    - r 
(22) -^ ± = slna 

and 

0 =• ^ a 

I 
- 25 - 
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FIGURE XI 

TORROIDAL BEARING 
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Combining and carrying out the Integration elves the same re- 

sult au for the flat bearing with a uniform load and the same 

Inside and outside radii, namely 

2  1/2 
D « r-J- "1        (See Equation 7) 

(See cases 3 and 4 for similar results) 

Case 8 HOLLOW TQRROIDAL BEARING - COSINE NORMAL PRESSURE 

DISTRIBUTION - SIZING UNDER AXIAL LOAD 

Here instead of Eqs. 20 and 23 we liave 

(25) q(e) « q0 cosG 

and 

0 =» a i 

(26) F = P    dPflv. .(3) - ' (qn cose)(2TTr)(Rd9)(co30) 
JQ = o  axlal   ^ ü 

respectively.  Integratlrv: and usinß the definitions of D and 0 

(Eqs. 5 and l) gives 

(27)     D;'B,a) « f- 

P 1/2 
3 i 

CB.1)2 ^(l^a, + (e.1)(5Ä .3^) 

- 2' 
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.2 
As a approaches zero,   thla approaches ' —5^  aa il ahoulu 

Some  results are ^Iven below In Table 4 for a ^ 90  . 

Table 4 

BEARINQ SIZE D VS BEARING RADIUS RATIO 6 FOR A TORROIDAL BEAR- 

ING WITH A COSINE LOAD DISTRIBUTION AND AN ANQLE g OF 90° 

rL_=_90^      I D (3,90°) 

. oor     [l>€  P. 25 Vor  a 
i.c:o  sclld Sph> brß> 

10 . 2c.o     with a cos. dist.) 

3 1.304 

3 1.387 

2 1.548 

5/3 1.695 

5/4 2.31 

10/9 3.22 

Case 9 HOLLOW CONICAL BEARING - UNIFORM NORMAL PRESSURE 

DISTRIBUTION - SIZING UNDER AXIAL LOAD 

The same results hold as for the flat bearing with a uni- 

form normal pressure distribution. This is included here Just 

to (;et a case number and a sketch for reference (See Figure 12). 

28 - 
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FIGURE XII 

HOLLOW CONICAL BEARING 
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Caae  10      BEARINO WITH THEORETICAL LINE CONTACT  -  SIZING 

UNDER AXIAL LOAD 

In the sketch,   (Figure 13)»  the bearing has theoretical 

line contact at a radius r .    The normal to the surfaces makes 
0 

an angle v with the shaft axis.    R,   Is  the meridian radius of 
A. 

curvature of the  shaft,  positive  if  the  shaft Is convex,   as 

shown.    Rp Is the meridian radius  of curvature of the bearinr, 

also positive if  the bearing is convex,   as shown.    The other 

two principal radii of curvature,   R,  and R2,  are always equal 

and opposite to each other in sign as shown, as the mating sur- 

faces co form in one direction. R, and Rp may each be infinite 

or negative,  but neither may be zero.    The quantity R    defined 

by   (See Eqs.   126 or 130) 

,-126) V *!  + \ 

must be positive in order to have thecreticai line contact 

(R =, + QD means the most conformity, R = -f £ > o means the 

least conformity). In terms of the notation of equations (119) 

and (121) we have 

(X19)    A+B = |ai+Jj- + ^+^)=^ 

-  30  - 



General Technology Corporation 

FIGURE XIII 

p
m (lb/in. m of cir.) 

BEARING WITH 

THEORETICAL LINE CONTACT 
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(120) B  - A  ^ ^ r^.   - V)2  ^ 2(^    -     ./^    - V)   co8[(2)(0)] 
^ 1       Rl      *     -\ 

P  1/2 

R?    -R1     J 

1 

o 

and 

+ 1 

(121) coso = s^ = -^ Iil= + 1 

The minus sl^'n has no sicnlflcance and so o Is zero, and 

we verify that the  surfaces coaforra In one direction. 

Axial equilibrium elves the (uniformly distributed) nor- 

mal force per unit  len^tn of contact  as 

^p  )(2nr  )(cosv) « P m o 

or 

o 

The maxinum boarln£; pressure per unit area Is given by 

2p 

•  ^    4o  na 
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where a la the small half width of the contact area and 1B 

Clven by 

r4 pm R ,1/2 

with R0 from Eq. 126 or 130, and Eo from Equation 131. 

Eliminating Pm, a, and ro from Eqs. k,  28, 125, and 126 

Gives for the dlmenslonless relative bearing size D 

pl/2 E 1/2     E 
(OQ\ n       0        r P 1  r    o 1 
(9)        2(n)3^(Clo)3^ Ro co»v  " ^   2" %  Ho C08- 

For     P « 15.95 lb.  (P. 114) 

qo = 285,000 pul (P. 108 - This choice le for theo- 
retical line contact) 

E = 21 x 10° pal (P. 108 - Sapphire Jewel and slee: 
0 shaft' 

we have 

pl/2E 
D = 0 

2(tT):3/2(q )3/2 R coav 

(29) 

 (15.95)1/2(21 x 10^) 

(2)(3.l4)3/2(,285 x 10b)3/2 Rrt coav 
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.0^97 
H"    COSV o 

We see  then that R    should be as lar^e as possible for 

small D (relative bearing size) and  so should cosv.    This means 

that from the point  of view of minimum bearirv: size  as deter- 

Fiiined by axial  load we want conforming surfaces   (lari_e  R   ) 

normal to the axial  load  (larce cosv).     For a typical bearing 

consider the spherical-conical bearing shown in Pic.   3.     There 

R    « R o 

(30) a =  v 

and R =»  r /slna 

Combining Eqs.   ^i,  5,  29,    no  30 gives for this bearing, 

rEo tarn .,1/2 

^ D=    ^q 

From this we  see  that the an^le a  should  not be  cheater 

than say 45° for this type of bearlnc.    This is not only rea- 

sonable  from a sizing point of view,   but it also helps  to 

prevent excessive  circumferential  stresses in the conical mem- 

ber due  to the  wedeln^ action of the  sphere in the  cone. 

For typical numerical sizes we  have with 

E    = 21 x  106 psl     (P.   108) 
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q0 - 285,000 psl      (P.   108) 

a - ^5°    (Probable design maximum) 

E    tana-1/2    _      21 x 106)  tan 45°      -,1/2 

(31) D - r-g~ 1      ~ T r-   ,      - 3.42 
2TTqo    J (2)   (3.14)   (.285 x 10b)J 

(d   )^f. Is calculated on the basis of a line contact design x  o re 1 0 

bearing stress of q    =» 285,000 psl. 

Thus T /o 
1/2 iU 

and 

do ■" D(do)ref 0 (3-42)    ('008A3) - .0288 in. 

This Is not out  of  line with the values  of d    for conforming 

bearings    (See Pages 15 and 16). 

As a check and to determine If the eliminated quantities 

have reasonable magnitudes, we calculate thebe quantities for 

this example. 

do   _   .0286  3    mv. 

^8) pm = 2n ro cosv =  (5)   {1.1A)   f^W) cos k^ = 2^0 lb-/ln 

r 

(3°) *o = ilHJ = {TUT)1 ' •0203 ln- 
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(31) u .0^97    = 
R     coav o 

.0497 .0^97 .. . uc. 

(124) a ^ 
2 Pm (2)   {250) 0OO5S9  In. 

-4  Pm Roi1/2   ■•^)   (2fi0)   (.0203)-/2 

n^o   - (3.14)   (21 x 10b) ' 
= .0005)54 in 

As  a comparison the  cylinder enclosing  the   outermost  Unit 

of contact  has a diameter of d     -♦■ 2a cosa =   .0296 In.   for this 

case.     The  sharp vee  Jewel bearing has for chls  cylinder's dia- 

meter  (P.   119). 

(2a,;t      - 2(.00::lo)  ^  .01032 in. 

Thus for the same loads and materials, but with the potential 

.0296 ability  to withstand  transverse   loads,  we are  about   'XVgyy =2.06 

times as  larr.e.     This Is quite  reasonable.     ;Note   that  this Is 

2.86 times as   lar^e as the enlarged  vee Jewel.     It  still ex- 

ceeds commercial practice  on Jewels,   but the ratio  is repre- 

sentative. ) 
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BEARINGS WITH AXIAL LOAD CAPACITY   - FRICTION TOHQUE WHEN OPERA- 

TED UNDER AXIAL LOAD ALONE 

Case  1       (See P.  7)    The general expression for the fric- 

tion torque  on ar    annular area of radius r and meridian length 

do,  with coefficient of friction n,  and normal pressure q Is 

(32) dTfr = Mq(2TTr)(ds)(r) 

For Case 1:  q(r) =» q . ds = dr, and the limits of Inte 

gratlon are r = r^ and r = r   Thus 

r=r_ r 
■« 

T 
r»   O c O 

fr 

-T^ [r0
3 - r^] 

We define as a reference friction torque the torque on a solid 

flat bearing with uniform normal pressure distribution. Since 

r.   = 0 and  r    ■=(r0)ref  (&!•   ^)»   we  have i"ür ^^3 case 

(34) (Tfr)ref - -^ rtr0)ref]    - | (uP)   (ro)ref 

- 37  - 



?enexal T* ctmolcgy Corporation 

It then seems natural to define a reference friction radius as 

(35) (rfp)„f - | (roW - § [,-£-] '* -
>1/2 (T,J, 

'o-

and a bearing friction radius ratio A by 

(36) a = rfr 

,rfr)ref 

and 

(37) rfr = F̂1* 

Using these definitions gives for A in terms of 3 (when Eq.7 

for D(fl) is considered) 

(38) s(») = — 
o 3/2 

(9 - 1) — 

As * approaches infinity this approaches 1, as It should for 

the solid flat bearing. This function is tabulated below in 

Table 5 and plotted In Figure 14. 
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Table ^ 

FRICTION RADIUS RATIO A VS BEARING RADIUS HATIQ g FOR A UNI- 

FORM LOAD ON A HOLLOW PLAT BEARINQ 

1 £ '■") 

1. OOO 

10 1.019 

5 I.058 

3 1.150 

2 1.348 

5/3 1.530 

5A 2.26 

10/9 3.28 

From the plot we note that A(^) Increases more rapidly 

than  D(P) In the range of « of Interest. 

Case 2  (See Pace 1'^ )  In Eq. 32 q(r) la given by Eq. 8, 

ds = dr. and the limits of Inte; ration are r. and r . Thus 
' c' A 0 

we get for the  friction  torque 

r 
o r  "  ri     p J    dTfr(r)   =1      (2^,)(qo)(l   -   ^——IjAr 
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o i 

The dlmenaionless friction radius ratio A becomes 

(^0) Ale^,) ^ A(D;6I^),   R; « D3ri - J ^^ -~J   :    - ~3 H     -     i 

where D(«,TI) 13 Given by Equation 10. Rather t'ian plot this 

we evaluate It for a typical case. Taking r] -- .5 'trapezoi- 

dal cilatrlbution)  and  8  = 1.66? w»2 have   (See  P.   lA) 

D(1.667,.5) = 1.463 

and 

A(l.667,.5) -  (1.463)3 : .556) = 1,74 

We compare this to A(1.667,0) = l.k330 (P. 39) and see that for 

the trapezoidal distribution the friction radius Increases by 

a factor of 1.74/1.53 = 1.14 over that for a uniform dlstrlbu 

tlon with the same axial load, design bearing stress, and rr.diua 

ratio. 

Case 3 (See P. 16)  In Eq. 32, q^) = qo, ds - Re!:, and 

the limits of integration are R = 0 and 9 =» a. Thus we ^et 

for the friction torque 
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8=a 

;9 
Tfr "J  dTfr^) 'i a qo r2TTr(o)](Rüp)[r(n) : 

where r(9) and R are related to 9 and a by Eqa. 11 and 12. 

Integrating gives 

r 3 

(41 ,     T  - ^nuq —y- ? g J 

and the dlmenalonless friction ratio becomes 

(^2)     Ma,D(a)) -  D3 \    ^ ^ . I^in2a^ 
-2 sln-a  4 s In-a. 

o where D = 1 for this case.  For a typical size take a = 30 

Then A(300) = 1.08.  So for a = 30° the friction radJus for 

this case is 1.08 tlmey as hl^h as for a flat beartn^. 

Case 4 «See P. 18) Only the limits of integration change 

from Case 3. The lower limit becomes G = a* giving 
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■3 
^ « 4     o        Ti       sIn 2aj- 

sin^a   " 

The c31raenßlonl«aü friction ratio becomes 

_       - _ s'.n 2a   -   sln^ 
(hk) A[a,a1>D;a,a1;",  - ^ ^-5"    'i  - ~- 5  

2:  3in\ 

In liquation Ühß  D^ Is  the  sair.e as for a flat bear in, with uni- 

form normal pressure   (Eq.   7)  and ?..,  a,   and   R  are  related  by 

Eq.   19.     For a typical  size  take 

NO a  - 90    and  8 = I.667 

Then 

(19) sin a,  - ~ siria  -   ;.6)(i) -  .6,  a,    ■■ 36.8° u./ Q     'J-'-"Jx    -     '  . <. / \ - /    —     . ^> ,      J, ^ 

ana 

and 

D3     -       U.25O)3       (P.        14; 

A -  (1.953)(1.5}(1 408J  = 4.12 

This la high, but a uniform normal pressure distribution from 

a.i  = 36.8° to a = 90° r.lves a large friction of feet: from that 

part of the arc near 9 ■■=  90° with little or no effect on the 

axial load.  We should expect. 1 he cosine noiina] pressure dis- 

tribution of Case 6 to give more realistic values here. 
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Cage ^    (P.   16)    Here 

q(o) = q0 cose 

ds  = R do 

r = R sine 

r    ~ R  nil a 

and  Eq,   32 fcecomeR 

dT., ^)(q^  CC33J(2TTR 3ln8)(R d9)',.Rsln9) ■fr 

The  limits are  0  ^ 0 and   0  ~ i.    Thus 

a 
IV^ - (    dTfri(G)   - !    'K3    2T,K

J
 sin  B  COSQ de fr ^ -*fr-'  ^ ^o 

or 0 
2rMq^ r - 

(4s)     T  -    Q 2 . 

The dlmensionlesB frlctlcn radius ratio becomes 

(46)     A = D3 

where D(a)  Is given by Ec.   15 and  is tabilatad  on P.  20, 

For numerical values  take a = 90  ,     Tl:en 

I>(a)  = fij    " "  1-22^    ■'p-   20' 

and A(90°)  -  1.638 
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Thus the  solid hemispherical bearing with a cosine normal pres- 

sure distribution has only 1.225 times the  outside diameter 

of a flat bearing of the  same capacity,   but has I.838 timej as 

much friction  torque. 

Case  6    (P.  22)    Here q(f})  = q    cose/cosa*   and  the  lower 

limit becomes a4   where  sir. a.,   = r./R  !Eq.   17).     The friction 
1 J. 1 

torque becomes 

T ̂ r 
a "X   aqo  2TTR3

     S   2 
,     ^fr^  ~X     cosa, 
^1 ^1 i 

sin  ü  cosn d 

or 

■5 
2rTMqrt r -*  _ ,   _ 

The friction radius ratio then becomes 

(48) A(B, D,  0^) = 

D3  (1  - K) 
 sf 

cos   1. 

For typical numerical values take a = 90° and fl = I.667. Then 

(P. 25) ai = 36.8° and D - 1.532 giving 
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I>3 (1 - -.) 
1. = 'l.532)3\l  -  .63) ^ 

cosa. 8 
' 3-52 

Thus the size Is 1.332 times that of a solid flat bearing 

but the friction torque is 3-52 times as much. 

Case 7 (P. 25) Here 

(20) 

«'21) 

and 
(22) 

q"9) - q o 

re) = r^ + R slnO 

R 
r    - r4 Q     i 

sina 

The limits of integration are 9=0 and 9 = a^ and ds = R de 

The friction torque thus becomes 

T  ^ !   dT ■■ n) 

a 

MO 
fu)(qü)(2n)(r1 + R 3in3) R do 

which upon integration elves 

;49)     Tfr = 2n^qoR [i^2,  + 2 i^R'l - cosa) 

R2/a  sln_2aO 

The friction radius ratic then beccraes 
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f5°> * ° °3 ~~5C5T [r§ + 2 ( 1si '^0 S a ) ^ - T> 

/a Sin2a\ 
+ l * - Y ~ (i.i)^ 

sin a J 

For numerical values in a particular case take a « 90° and 

« = 1.667. Then 

D - 1.250 (P. 14) 
and 

4 - (1.250)3 f(3)M.) + g^11"' 0 ) (.6)<.it) 
"T 

rr 0 
+ 5 _ _ | ( . t ) 2 ] l 

(1) 

a = I.2503 (1.42) .. 2.77 

We see that the combination of a uniform pressure distribution 

and a = 90° gives large weight to friction on the outer arc 

length that is nearly parallel to the centerline (AB in the 

sketch, Pig. 15) and so tends to make the friction torque high. 

Case 8 (P. 27) This is the same as Case 7 except that 

(25) q(e) = qQ cos9 

The friction torque is then 
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FIGURE XV 

EFFECT OF LARGE NORMAL 

PRESSURES NEAR q = 90° 
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a a 

(r.   + R alne)2R do 

which upon Integration gives 

131) Tfr = 2nM q0R [rJL
ri  sina   -*   r1 R sin2!  + H2 ^-^^ 

The   friction radius  ratio  then becomes 

(52) ^ D3 rl  - Vi 

Note that even thou^h Eq. 38 can be put into this form, D(B) 

in Eq. 38 is given by Eq. 7 while D(B) here ip ^iven by Eq. 27 

and is larger. 

For the numerical values in a particular case take a = 90 

and B = 1.667.  Then D^B,a) = 1.695 (P. 28) and 

A(ö) = (1.695)3 [1 - .631 = 3.81.  Comparing Cases k,   6,  7, 

and 8 with B = 5/3 and a = 90° gives 

D(B - 5/3. a-90Q) A(5/3. 90°) 

Case 4 - Hollow sph. unif. pres.   1.250        4.12 (P. 43) 

Case 6 - Hollow sph. cosine pres.  1.532        3.52 (. 46) 

Case 7 - Hollow torr. unif. pres.  I.25O        2.77 (P. 47) 

Case 8 - Hollow torr. cosine pres.  1.695        3.81 (p. 49) 

- 49 - 



jcneral  Tcchn^ic, .j'  Corporation 

The  uniform presaare  assumption Is  seen  to be  more  conservative 

as  regards  friction torque  for  the  spherical bearing,  but not 

for  the   t  rroldal bearlrio;   and   the  cosine  pressure  assumption 

Is more  c  nservatlve as  regards size for both cases.     The cosine 

pressure  assumption Is more  realistic  for both shapes and with 

this we  see   that  for  the  an^le  a =» 90    and   ö  =   1.667  the  hollow 

spherical  bearing has both smaller size  and   lower friction than 

the  hollow  torroldal bearlrv,. 

Case  9     (P.  28)    Here 

q(r)   = q o 

as  = dr/cosv 

and  the  limits of Integration are r.  and  r  .     The friction torque 0 1 o 

becomes 

r 
r>   0 

fr 
^ 

dTfr(ri 
.ro 

"T; 

u(q0)(2Trr){5^)(r) 

which upon  Integration ^Ives 

53 
2nuq0   (ro

3  -  r,3) 
fr      cosv T 

The  friction radius ratio becomes 

- ^0  - 
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(5^: A   -  D3   (1   - i--)   —-i- 
Q3

;  cosv 

Thus while  the  size  of  this  conical bearing   Is  the  same 

as  for a flat bearing,   the  friction torque  Increases by a fac 
i 

r,or of 
COS' 

The largest v used would probably not exceed 45 due to 

the wedging that would occur.  Thus for v = ^S0 and 

fl = 1.667, A = I Alk  times that of the flat bearing with 

the same fl or (See P. 39 for 1.530). 

A (fl = ^ v --= 45°) - (1.41^; (1.530) - 2.1? 

Case 10  (See P. 30;  In this case the normal forces are 

all acting at the r»dlus ro so that 

'r. > Tfr = ^HPm)(2TrroAro; 

Using Eq. 28 for p gives 

(.55)     Tfr - uP ro/cosv 

The friction radius ratio then becomes 

(56)     A = i - 3 D 
d  cosv 
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For the  spherical-conical bearin0 shown In Fl^.   3i   (?•   6)  with 

the  numerical values  of Pa^es 3^ arid  35*  we  have   (See P.   35 

for D) 

A.3    _llJi|i.7.24 
^    cos  45° 

While   this seems high note  on P.   36 that  this bearirv; is about 

2.66 times as large as a flat bearing with  the same materials 

ano axial load capacity. 

Ln all of the  cases  above we are probably not too worried 

about  hl^h friction torques due  to axial  loads as these  loads 

are  only acting a relatively short  time  and   the mechanltsrn may 

not even be required   to operate during  the  axial acceleration 

interval.    The  results above are  Included mainly for complete- 

ness. 

- 52  - 



Qeneral Technology Corporation 

SECTION II 

TRANSVERSE LOADING ON BEARJNQS WITH AXIAL LOAD CAPACITY 

Qeneral Procedure 

A reasonable aistrlbutlün of normal forces will be assumed 

for each of the bearing shapes, and the friction torque and 

transverse force will each be found In terms of the maximum 

normal contact pressure. This will allow the friction torque 

and maximum contact pressure to be expressed In terms of the 

transverse applied force. 

Cases 1 and 2 - Plat Bearings 

These flat bearings cannot resist transverse load. They 

were analyzed because they provide the most resistance to axial 

load and so form a standard for the other bearings, and because 

they can be used In conjunction with Journal bearings which 

are studied In SECTION Til. 

Cases 3, 4, 3, and 6 - Spherical Bearings - Hollow and 

Solid 

Only one normal pressure distribution will be considered 

for spherical bearings under transverse load. Solid bearings 

will be considered as a special case of hollow ones. Figure 16 

shows the bearing and the parameters of Interest. 

The normal pressure has been taken to be a function of the 

latitude an^le Q and the longitude angle *. As a reasonable 

distribution for Initially conforming surfaces such as these 

we assume 
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FIGURE XVI 
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SPHERICAL BEARING  FOR 

TRANSVERSE LOAD  ANALYSIS 
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a^ < e < o 
I (57) q(e.»)  =qo|$Lco8« 

This distribution Is sketched In Flg. 16 as a function of q 

for * = 0. For any other * between - S- and J the variation 

with 9 Is the same, but all values are scaled down by the fac- 

tor cos «. The longitude of raaxiraurn normal pressure is taken 

behind the plane of the transverse applied load by an acute 

ancle y as shown.  At a fixed latitude 9, the pressure is as- 

sumed to drop off harmonically with longitude ♦ from this 

maximum value. Similarly at a fixed longitude * the pressure 

is assumed to vary harmonically with 9, being maximum when q 

is maximum. The angle y  is caused by the transverse resultant 

friction force as will be seen below. 

The angles and radii are related by: 

(11) r - R sine 

(12) r = R sina 
o 

(17)    ^ = R sinc^ 

and the radius ratio P is 

sina 
(19) Q/ v  sina    o 

The differential element of area is 
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(58)    dA » (Rde)(rdO 

The friction torque due to the normal pressure q(P!) on the area 

dA is 

(59)    dT. = uq(8,0(dA)(r(e)) - (u)(dN)(r) fr 

which, when equations 11,  12,  17,  57,  and 36 are used  can be writ, 

ten as 

dT^  (9,»)  =-^ 
LU3    sine co3^(Rdü)(Rsined*)(R8inG) 

fr sina 

or 

(60) 
3 

dTr (9,') =^^0- ^-3 fr' sin 
2~ (sin^G  cos*) dOd^ 

Then the friction tDrque becomes 

T fr ■1 
9=a    * = 

9=1^ ^*= - j r      fr1  ' 

or 

(61) Tfr (^o^^i^ = 

Of 2 2 1 
2uqoro    C08ai 3in ai  " C081  sin a + 2(C03ai1  - cosa) ' 
 = _  

3sin\ 
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In order to find qÄ In terras of the transverse load applied o 

to the bearing we must find the transverse components of dN 

and dPr and write the transverse equations of equilibrium. 

Prom the symmetry of q(9,0 about the xz plane we see 

that the distribution q(e,0 has zero yn component. Its ^ 

component Is given by 

9»a ^ * * ^ 
(62)     - ^ » F   [      (q(8,OdA)(8lne)(cosO 

which upon Integration becomes 

r 2 

(63) ~ *ti "  °—T* r(C08ai 8ln ^i - cosa 8in a) 
6 sin a 

+ 2(008(1* - cosa) J 

The symmetry of q(9,*) atout the xz plane also gives zero X- 

component of the friction force.  Its Yf component Is given 

by 

9**!  * = TJ- 

(64)     - Y  « T   r      ^(9, OdA cos* 

which upon Integration becomes 
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Tmq^r 2 

(65) - yfr 2°    r(a - c^)  - £ (sin 2a - alr^^)] 

The equilibrium of forcea parallel to the xy plane then 

glvea 

1/2 
W *tr.l brg. = [«-Xn)2 +(  -yfr)2: 

and 

(6?) tan Y » -^1^ 

which can be uaed to express y In terras of the geometric quan- 

tities a and a^ and the coeflclent of friction u.    Of more in- 

terest,  however,  is the relation between P.     ,  . and qo, 

which can be written as 

(68)    Ptr-1 b^. - [^§r-l(A2(a'ai) + ^*'^f2 

where 

(69) A(a,ai)= ^ [(cosa^ sin a^ - cosa sin a) 

+ 2(008(1*   -  cosa) 

(70) B(a,a1) »= J [(a - a^)  - |(sln2a - sir^aj.)] 
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and 

(70a) tany = ^ 

To make the results dlmenslonless we Introduce a reference 

transverse outside radius (r0)ref    tr ,   such that the transverse 

load on one bearing divided by the area of a semicircle of this 

radius gives q .    Thus 

(71) (r ) - r2Ptr.  1 brg.  i1/2
= fftr.  shaft-1/2 

UJ.; vro;ref.tr.      L      TT qrt j u      n qft      J 

(Note the similarity In form to Eq. 4,  P. 7.) Then we define 

the transverse size ratio as 

(72) D4 
ro 

'tr     TrHf o'ref.tr. 

(Note that D.  » 1 for a = 90°, c^ = 0°, and q(9,*) ^^  *&& 

compare to Case 3 where D = 1.) 

Using these definitions Equation 68 becomes 

^3)    I>tr - 
r f\^^ 
2(A2 + u2B2) 
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Next a transverse friction radius Is Introduced by 

(74) r„ - ifr'1 brS' u   ' 1fr.  tr. p 
u rtr.l brg. 

and a reference transverse friction radius by 

(75) rfr>  ref_tr.# = § (r0) ref.  tr. 

A cylinder of radius r    and  length h with uniform pressure q 

over half of its circumference has a friction torque of Tf 

3 ^V^V^o and a transverse load of ptr.l brg." qo^2roh^ 

Its transverse friction radius is then r^ . ,  = ^rr/^tr ^ 

= T7r0/2.   Both (r0)ref#  tr#   and rfr#  ref.  tr.  are quite artlflcle 

Finally,  a transverse friction radius ratio  t.      is Intro- 

duced as 

^      -fr.ref.tr.      ^c ^    " U ^  ^  ro ref, 

Combining these definitions with the expressions for Tf  and 

P.   in terms of q gives 

(77)    atr-■ Tii^ L2 A^2 J K] 
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or 

(78) vtr " 1? 
8c08X/r.       . 
5 N^t-rW 

TT    slna tr- 

when Eq.  67 Is used. 

For numerical values consider the h cases: 

and 

90°   with    R =-- *   and B = 5/3 

30°   with    B =» a»   and 8 - 5/3 

where u »  .17 (P.  122). 

(a g 90Oi  Q ° «)  (Pull solid hemispherical bearing) 

a.  = 0V 

(69) A(a,a1) - ^ [(0 - 0) +2(1 - 0)] 

.333 

tr. 
(70) MB(ala1) * ^ {{% - 0) - I (slntr - slnO)] 

« ^2. =  .0667 

tany = ^ »  .200 
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(70a) Y 
0 11.33° =  .198    rad. 

COSy      =   .980 

,     1/2 12 

U3) Dtr = J^^rg-—— —-^ = T:7rr7r l^p- 

L21      [A*"   r ;uBr] 

1       ..980v
1/2 

1.41^ 
- v :T?T) 33? 

Dtr =  1.21P 

g = 90°J   
fl = I.667  (Hollow hemispherical bearing) 

OL± = 36.8° (P.  25) 

A(a,a1)  = I r((.8)(.6)2  - 0)  + 2(.8 -   0)] =  .314 

viBta,^) = 41 l(? ~  •6i42)  " 2 '0 - 3^73.6°)] = .0599 

tany = ^|^ =  .291 

Y = 10.80 =  .188 rad. 

cosy    =  .984 

n 1       r.9&^/2     T.2C>0 

This small  Increase Indicates  that the section fr m 0=0 

to 0 = a.i   = 36.8° does not carry much transverse  load when 

a = 90°.    This seems reascnable. 

- 62 - 



a ^ 30Qi 9 ° « (Solid bearing with outside half angle of 30°) 

a, =0 

A(a,ntli) = ^ [(0 - (.866)f.5)2) + 2(1 - .866)1 = .00859 

uß = njl [(g _ 0)   -  (.5(8in60o  - 8in00)]    =  .OO387 

tany = •003ö7   hm 

Y = « 24.23° 

COSY 5 » .911 

Dtr = 
T cosy „4^3 = I  g^' sin-^a ^1/2, r -911 i1/2   1   ( 5)3/2 

(This relatively hitih value  of D,     may  control  sizing.     Check 

below.) 

a = 30°, a =. I.667 (Hollow bearing with outsioe half angle of 30°) 

dj = 17.47° = .305 rad.  (P. 24) 

A = ^ r(cosl7.470 sin2 17.47° - .2165 

+ 2(cos 17.47° - .866)1 « .00790 

uB = ^(g - .303) - .5 ^.866 - sin34.94°}l = .OO308 

.00308 onA tanY = Tmgc = ■390 
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v - 21.3° 

cosy a .931 

Dtr.  "[ÄJ^'TTÄ3'2^2-71 

The relatively high valuea of D, , for a = 30 may control alz- 

Ing.  To check this we go to the definitions of D.  and D to <:et 

P »n 1   ' 
/7Q\       (D     ) T) r ^^^-al üeslgn   f^ojtr.  design ^r' 
Uö;       lL,trWlinum allow- " design    (F     } Iq'j  axial"     . 

able for axial tr  iiJ"al de-      0    design 
loading to con- 3lL>n 

trol sizing 

Using  the  numerical values: 

Paxlal design    =  ^'^ lb-   (P-   U^ 
Ptr total design = Q^ lb-   ^ 12^ 

% axial design = 242'000 pxl  ^P-  95) 

^o^r.  design " 242^00 Psl  (p-   95)  noting that 

the bearing must allow rotation under the  transverse  load). 

gives  for the four cases  considered: 
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-t  - ^Q0;   ß 

a^^ • 0;       D(a,a1) = 1.225  (cosine  load P.  25) 

n i   o-t r 1^.95 ^ 242^000-i1/2    ^  oocw.   Q^vl/2 Dtr. max.   " l'22b   . -^87 x ^^TJÖ^J     " (^^SS) (1.80) 
allow. 

(77) 

Dtr.  max.   =1.225(1.342)  = 1.642 
allow. 

Thus the sizing Is  controlled by  the axial-loading for this 

bearing and loading.     (Dtr    = 1.212   (P.   62)) 

a - 90°. g i 1.667 

a. - 36.8°, D = 1.532 (cosine load P. 25) 

Dtr. max. = l'^2  ^'^  ~ 2'06 

allow. 

Here the sizing is still controlled by the axial load. 

(Dtr> = 1.250, P. 62) 

a -  30°. g - « 

a1 = 0T D = 1.036 (cosine load, P. 24) 

D.r. max. = (l-033)  C1'^2'  " 1-390 
allow. 
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a ^ 30° ^ = 1.667 

ll = 17.47°,  D - 1.283     (P.   24) 

-tr.  max.  allo..  =  (1.283)(1.342) =1.723 

In these  last  two cares the  transverse loading definitely 

controls slzlnß   (D.       = 2.38 and D.       =2.71 respectively, 
U X « C X * 

Pages 63,  64). 

The main general conclusion about the relative suitability 

of shallow (o = 33°) spherical bearings Is then that the design 

axial load must be much higher than the design brai.sverse loads. 

In any particular design of course, the actual load ratios may 

depart from those that were used here. 

For the numerical calculation of &.   ve have (Eq. 78): 

q = 90°. S = ~ cosy = -900     (P. 62) 

ttr   „S^.gSOjJUglgl^ (.795)11.212) = .96^ 
TT    (1 ) 

a = 9QQ
i  R =. 1.667 cosy -  .984    (P.   62) 

= 8(^84J (1,2501 =   (.798)(1.250) .  .998 
U1,       n^     (1) 

a   =   30°^    P   .-.   a.      COSY   =    .911       (P.    63) 
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A       = fi    Lml i2-^) = (i.48)(2.5ö) - 3.82 
"• TT^ (.5) 

g   ■-= 30°,   B  °  1.667     cosy  =   .931     (P.   64) 

8   (.93l)_(2»7l) 'T   CTX/OV^        n 
tr "    2  ToT =  U.51)(2.71) =• 4. 09 

These  results  Indicate  less  friction toi-que when a = 90^ 

than when a ^ 30  *   and also only a very small increase  in 

friction torque for hollow spherical bearings over solid ones 

with the  same  outside angle. 

It would be of interest to have a numerical value for the 

operating friction torque.    Let us consider the case: 

a ^ 90°.   ft - «> 

We have D.       = 1.212  (P.  62)  and also that the axial load 

inc controls size   (P.  65).    If we  had  sized on the basis of 

transverse  load,  we w.uld ^et a slightly smaller bearing,: 

(71) (Otr.   sizing  ^tr.5   ^o^ref.tr. 

.72) D      r Ptr    shaft -:1//2 

'tr     "^o^des.tr^ 

Usin^; the numerical values of P.   64 ^ives 
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(Vtr.Blzlnc " '1-212) [ U.UnUz.m) f2' U.212)(.00342) 
=  .00115 In. 

'do'tr.  sizing    -  •0O83 ln- 

For axial  load  sizing  (See  PP.   11 and 25): 

do = D^o)ref. 

=  (1.225)(.0092)  =  .01126 

The friction radius for transverse  sizing is 

^frJtr.   sizing^ Atr.^ro^ref.tr.=  (-964)(1.571)(.003^2) 

"fr.tr. sizing^  '^lö in. 

and   (Eq.  /4) 

Tfr.ur. 2 brg." u  :Ptr^  ^brc- ''rfr}^r. 

= (.17)(8.07)'..00518) 

Tfr.tr. 2 brg. =  .0106 lb.   in. 

Comparing this  to    (2) (.0120)   =  .02^0 In.   lb.   on P.   95 

shows some  theoretical advantage  to  the  hemispherical  conforming 

bearing over the  cylindrical  journal bearing. 
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Cases 7 and 8  TORROIDAL BEARINGS 

Using the notation of the sketch (Figure 11) on P. 26 

we have, corresponding to Equations 11, 12, and 57 (* is the 

longitude angle as on P. 5:0: 

(78)     q(9,0 = q0 f^J- cos* (0 < e <^) 

(21)     r ^ Tj^ -f R slno 

ana 

(22}     r0 = ri + R 3lna 

The differential element jf area dA Is 

(79) dA = (Rdn)(rdf) = (RdA)(r1 + Rslne) d^ 

The friction torque due to the normal pressure q(9,^) on the 

area dA Is 

(80) dTfr (Q,') = n dNr - nqe,*) dA(«,*)r(e) 

which, when the equations above are used, can be written as 

dTfr (6,0 - uq3 |}~£ cos^ (Rd9)(r1 + Rslnq) 

a* )(r1 + Rslnq) 
or a? 
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u q. r 3(i . 1) 
(81) dTfr = -—0

ir2~~ ^ r S%JL sino 
Ir Bin    a L    ß 

+ iCl-^ßina sin29 

+ (1 . I)2 sln3e](co8»)d» Jo 

The friction torque  then becomes 

fla^ *      ST     ^j. 

or 

(82) Tfr^q0,P,a) » 2J 1—j-^-C1 - C03a' 
sin a " ß 

,  2 aina   /-,       Iwa      3ln2a\ 
+ —$■— (1 - öH? TT"! 

. /,       IN2^      2 „^ cosaslnjix'1 
+ (1  - -B)   (^ - ^ cosa ^ )j 

The Y    component of the  transverse load  Is zero because 

of the syrnmetry of q(e,*)  about the x axis  (* = 0).    The X 

component Is given by 
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(83) - Xn « „ [q{R,0  dA](slne)(coß*) 
Oe=o  ^ ~ - £■ 

which,  upon integratloii becomes 

, O/.N Y        
n qo lü       ■'"  " ^      rsina   rx       sln2aN 

n 2  sln^a 

1      p       p i 2        1 

The  syramstry of q(el ^ about the x axis i-lves zero Xf 

component of  the  friction  force.    The yf    component is given 

by 

,-> i <i 

85) - Y.    = ; i iLQvC,^ dA] cos' 

which upon integration becomes 

■npq   i'     ' 1   -  ^;   p.   . 
üb) - \r    = «—  ,     -^., i   .  COST) Cr ^ ------3---- ~ i -g- 

dSin   i 

.     ,       i•   ,a     3in2c vn 
+     .1     -     g.'      ^    -   -If—), 
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The equilibrium equations,  66 and  67,   then clve 

nq r       (1  -■=-),.  p p    p -,1/2 
f«87^ Ptr   Ibr-    - - -V- L|E  ^'^  + ^ P2(a,R)] cr. i DPo. PBln^ a L J 

and 

PB, tanv  ^ # 

where E and F are defined by 

/DO i vr     o\      f 8lrvi    ex      aln^i r lw2      2 o^a >o9; E(a,ß; = | -^— ^ ~ —^r ^ " ^^5 ~ I     a 

1 2     ^ -  7 cosa  3.1 n a) 

and 

(90) P(a,8)  = [ *£& [1  - coaai  - (1   - i) f| - ^J^a)  ^ 

Uslne  the deflnltlonts  Df D.     and   tt    and  the results above 

gives 

3 j '? 

(91^ Dt 
r 8inrj- 

ti . i      .  P        ?    p'X7^" -j 

and 



it .i i Tf. chn DJ V. ;y Corpni a : i' .. 

11     8lna (E2  f ^P2) 

As a partial check note thet as ^ approach-ec  » the right side of 

9^ approaches  Liu  rirht sido  of  r/   't,^15, c,   == 1;  and  the right 

side of  ■.);  a^croicbes  the n^v:  nXcr* or 73  f,r a.  = o).     Thus 

the limiting behavior as  the  fcorroJdal bearii^ becomes a solid 

spherical bearln :  checks. 

For numerical values note that for ß ^ « we get the  same 

results as fcr t'ie  spherical bearing.    Thus consider the  two casts 

a = 90°,  6 =» 5/3      and      a = 30°,  6 - 5/3 

a » 90°,  B =« 5/3 

(89) E(9C0, |)    - [   f if - •al^l80Q) - (:•- - .6)(| cos 90< 

^ cos 90° sin2 90°)] 

-  .738 

(9C) F(9C0. |)  = [  (.6)(1  - 0)  +    .4)(5)] 

-  .91^1 

(u -  .17) 

7 
i 3 - 
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(91'    Dtr - r -iiiV-i—3   ^f2 
(.4)  [  ,7382 + (.17)2(.9^i^ 

= 1.822 

As we  should  expect,  the  cut off spherical  öearlrvj; resists trans- 

verse  load more efficiently  (p.   62,   D,     « 1.250),   because its 

inner edge makes a greater angle   (36.8° in this case)   to the 

transverse  load  than does  that  of the  torroidal bearing 

(0° In all cases). 

(92) Af    =      *      r  M)   (.738) t :.6)   (.9141 ^ .^^ 
rr      n  (1)   - .754 

=   1.651 

Comparing this to  Afc    =  .998  (P.66)  for the  hollow spherical 

bearing with the  same a and  ;•,   shows  that  for  the   same  load  anc 

stress  the  torroidal has more  friction primarily due  to Its 

greater size. 

0= 30°.     B  - \ 

E(30o,   1.667)  =  .02013 

F(30ü,  1.667)  - .0584 

(E2 -f u2P2)    '   ■=  .0228 

- 7L' 
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Dtr = [ (.4)I:^LT ]1/2 = ^70 

A  = - g   I ^)(.Q205) +  (.3)1.0584)^  v.7o 
tr  n2 (.5) .0228 

- 6.73 

Again the   torroldal bear^-     ^s  less efficient;  In resisting  trails- 

verse  loads  (D. .     «2.71,   'P.  64)1 and  for the  same  loads 
cr,spn. 

and stresses has a greater friction radius (A. , „_.  = 4. )9 'P. (J1)) 
x, i. . ut> n. 

Case 9  CONICAL BgARING 

For this case we assume the normal pressure distribution 

'.See sketch Fig. 12 (P. 29)): 

r.)     •! r)')  = qo COP'    v,   < r ;_ vo) 

The differential element oi.' area Is 

(94)     dA = ■,----) tr d*) 

The friction torque due to the noncaJ pressure !\\V,h)  on the 

area dA Is 

(9C. )     dTf  (r,0 = u .M r - ;jq t)dA r,$)r 

or 

■:9C')     dTrT, .r.O - u q  cosrl ^-iT-H) fr) 

Thi total friction torque Is ther. 
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Tfr. Ibrg.  "J^^        J* .      H 

o      n        2    ^ q    cos» r    drd» 

Jprnp^ Jf *   "   -  7T cosv 1      '» - - 2" 

or 

(97) Tfr  1 brG    *    Mq^r0      (1 - \) ir. J, orb. ^ C08v ßJ 

The Y    component of the transverse load  Is again zero 

by symmetry and  the X    component Is given by 

- X„ « I q(*) dA slnv cos$ 

which upon Integration becomes 

2 
nq r^    tanv , 

(98) - Xn = ~~2~S (l - \) 

The Xf    component of the friction force is a^ain zero by sym- 

metry while the Y-    component Is given by 

^ro       * ^ ? 
- Y 

»X* u 
■fr   ^ 

[i q(*)  dA  cos* 
»   =   -   TJ- 

which upon integration becomes 
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(99)        - vfr - np^s- n - i) 

The equilibrium equations 66 and 6? ßive 

uoo)      p-.1^.-^±(1-7K8lnv + u) 

and 

(101) tanY «. ^ 

Using the definitions of D.     aiid  A.     with the  above  results 

gives 

,1/2 
,tr .  , 2   J (102)       D^ . r ^m. 

(1  - \)   (sln2v -i- u2) 
B 

and 

16 (1  "^ 

3TT
      (1-4)   fsln2v + u2)  ' 

For numerical values use   v = 4t) ,   and H = 4,   taking u ==  .1? aa 

usual;   then 

- 77  - 



and 

Genera].  Tech'iOiOj'i   G^rp^ratloi. 

D   . r (g) (o°° ^5°) .11/2 

(i - .62) [(.TO/)
2
 + {.i7ry/d 

16    (1  -  .63) fl.?/^) 
tr      3n     (1  -  .62)   (.727) 

1.581 

These  seem In line with the  other numerical values. 

Case 10 Bearing with Theoretical Line Contact Uslnc Pleure 

13 of P. 31 and the longitude angle ^ we assume a transverse nor 

mal force distribution of 

(104)        p(0- Pra co3»    K~ ofbcir.     ( " § < ' i 5 ) 

The arc  length on which this acts la 

(105) ds = ro df 

so that  the differential  friction torque becomes 

dTfr =   up(*) (d3)(ro)  -   lM prn)(co3f)(ro)(d0(ro) 
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The  total friction torque Is then 

* 
TT 

(106) fr dT-    - 2|4)    r ' . r      fr        ^^ra    o 

The X    component  of transverse force la given by 

*       * 

- X n 
^ 

vp    cost)(r    d»)(Qlnv)(cos*) 
IT      m x  o 'x 

or 

(107) " Xn ^ 5  ^m ro 8lnv' 

The Yf    component  of transverne  force Is ^Iven by 

- Y 
n 

TT 

fr u'P     cos»)fi'    d<5)(co3^) 

or 

(108) - Yfr « 
a " pm ro 

The equilibrium equaclons 66 and 6j  then give 

;i0^    Ptr,lbr2. =?-
Dmro ^^^ + ^^ 

1/2 
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and 

(110) tanY - -^ 

Uslne the definitions of D.  and A.  with the results above 

gives 

p. r q „1/2 

p  (sin v H- u ) 

and 

(112)    Ätr-.- -T72 

n {Bin  v + ^i ) 

Eliminating a between equations 124 and 125 gives 

T7 R q 2 

(113)    Pm = —^- m    EG 

Using the last equation to eliminate p fron the expression 

above for D,  gives 

^0   0    ' .4  ^    .    t \ \,sln ^' + u ) 

If r    has been determined with axial load  sizing,     Equations 

U,  5,  and 29 give 
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P              E / -n r \ _ axial    o  
[    J> 0 "i?1  load    = 2„2  ((q  )     ,ol)

2R    cosv sizing ^^o'axial'      o 

while with radial load sizing equations 109,   124,  and  125 zlve 

(llb) (ro)transverse    " ~Z ' ~ p7? 
load  sizing      n    qo    Ro  (sin v   i   ;A  ) 

To determine whether sizing  is contrclec by axial or trans- 

verse  loading we  take  the ratio of  (ro)axlal load  slzlr^ over 

(r  ).       ,     ,    A   .      and  see whether it is greater than one  or less o'tr,   load  sizing 
than one.    Thus 

o'axlal load              p ((n  )                     r 
fll7)                 sizing    _  ^ .         axial  w qo;tr. design1         \ 

(r  ).                              ^tT.2 brg. I     .                          y.2 

o'transverse f(o         . n   ^Ä«^«) 
xoao  blzing o;axial design' 

1/2 

2  cosv J 

If this ratio is set equal to one we can solve for an "optimum" 

angle v for this type of bearing, in the senoe that the bearing 

has equal strength in both directions. This dees not necessarily 

give the lowest friction torque, or the best angle v from a 

wedging point of view however, and should be used with caution. 
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To see what happens let ua take  a particular numerical  case 

Taking 

Paxlal = 1C3'95 lb-   !P-  114) 

P-     0 . =    S.87 lb.   VP.   124) tr. ,5  org. ' 

using the  same design preaaure q    for axla3   loading and  transverse 

loading,   and  setting the  left hand  aide or Eq.   117 equal  to one 

gives 

? P 
1/2 

l   ~   (   1^-93  A   'IN   (sln^v  + ufj 
^^        ^ cosv 

For u = .17, vie get v = ^7.4° which Is so close to 45° that we 

can consider v to have teen 45( and axla] load sizing to have 

controlled.  Equation (ill) then gives 

8(D 
Atr = -^ ~~. ^7^ ^ ^ ^tr) 

r1- (8lnc 45° - 17^) 

Using the data of PP.  34,   ?5 In Equation  (114;   -ives 

Dtr = [   (21 x 106)(.0144) ^2 

(3.l4);/285,000)(.0203)(.7072 + .172) 

D.     = 4.72 ur 

and 

AtT> - 1.112(4.72) = 5.25 

which are in line with these quantities for the other bearings 

considered. op 
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SECTION III 

JOURNAL TARINGS 

Having rejected vee Jewel bearings on the basis of their 

transverse flexibility (see SECTION IV), we are left with two 

general types of bearliigs;  Journal bearing^, and combined thrusc 

and transverse bearings. The possibility of  the use of a Jour- 

nal bearing for the forward bearing, and In ccnjunctlon with a 

thrust bearing for the aft bearing will now be considered. 

A cross sectional view of a Journal bearing Is shown In 

Pig. 17. 

A cylindrical shaft el   diejneter dfln.)  turns  In part of 
3 

a torroldal  Jewel with Inside diameter dQ   f- c   (In.)  and meridian s 

radius R^ fin.).  As a limiting case ^he bearing may be cylin- 

drical (R    = •) and the axial clearance anown may not exist or 
" B 

may be replaced by some provision for withstanding a small thrust 

load.  (Bearings with appreciable thrust capabilities are trea- 

ted separately in SECTIONS I and IT.) 

Contact Stress Analysis 

The limitations on d . R_, and P.  . , _,  that are Imposed 
s  a i/r.ikJiij,. 

by contact stress considerations will be considered first. 

When two convex bodies with finite principal radii of cur- 

vature R,, R,, Rp and Rp are brought into contact, the locus of 

all points on the surfaces that are Initially the same small 

distance z apart, measured normal to the common tangent plane, 

Js the elliptical curve with the equation 
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FIGURE XVII 
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(118) z - Ax2 + By2 

where x and y are cartesian coordinates In the tancent plane, 

A and B are given by  the  solution of 

(119) A + B - i (i-    +^ + 1+1^) 

arid 

(120) B-A = ir(l        i,-)    + 2(1     _if)(l     -iT)co82^ 
d   - Kl       R1 "l       R1    K2      Rg 

1 1     2 n1/2 

K2      R2      J 

ai.d where  ^ is the an^le between the normal planes containing 

w-    and n- .     (See for example Tiraoshenko and Qoodler,    Theory 

of Elasticity pp.  377-382.) 

When the bodies are pressed together,   the boundary of the 

contact area Is a small ellipse with major and minor axes 

determined by the force,   the elastic constants of the mater- 

ials,  and by the quantity 9 where 

(121)       cose = \-^rk 

The Hertz contact stress theory will not be valid unless 
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the major and minor axes of  the elllpa«* of c. ntact are small 

compared   to the smallest  of  R,,   R,,  Rp,  and  RQ. 

For  the  case of  two   lone  cylinders with parallel axes 

^i  = 0,   R,   = «^  Rp = a»,   the  ellipse   (118)  becc/mes  two parallel 

lines,   (B  - A) becomes equal  to   (B + A),   0  is  zero^   and  the 

surface of contact becomej a rectangle  of lon^.; finite length 

and  shcrt  width compared   uo R,   and Rp.     rf  'he  end  effects arc 

neglected  and  the applied   load  is uniformly distributed  alon/-, 

the  length,   a valid  limiting solution  (for  o    -0)   is obtained. 

However,   In general,   as  0  approaches zero,   the  two surfaces become 

more and more nearly conforming  in at  least  one direction,   the 

major axis  of the ellipse  of contact becomes  large  compared  to 

the smallest radius of curvature,   and  the contact  stress    theory 

becomes Invalid.    Thus the  case  of two long  cylinders with paral- 

lel axes and  load uniformly distributed along  their length becomes 

the only valid  limiting case  of  contact stress  theory as  G ap - 

proaches zero. 

For the bearing under consideration we have  the two surfaces 

conforming  in the circumferential direction lor approximately 

half the  circumference but we d£ not have  a uniform distribution 

of  load  along this common clement.    The end effects are gradual 

however,   since  the conforming surfaces  turn smoothly with respec 

to the direction of the applied  force.     (W-4.th a roller of finite 

length pressed  onto another  the  end effects are  not negligible 

anö  the  solution is only valid  away from the  ends.) 
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To show the conformity of the surfaces take 

Ri   r" 

Then,   (see Figure 18) 

R1 = • 

R2 = -  ( ^ + ^ 

R2 = RB 

^ = 0 

and 

A + B = ? 'i +h *k+h 1      Rj     "2     R2 

i (2    + i .      2       1 

B - A = i T   (4    - i, )£ + 2(i    - i,)(i    - -1-, )  COB  2* 
^ "l      Kj "l       R      n2      R2 

+   ,1 I   W2 

2
    R2   

J 
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FIGURE XVIII 
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,<, .A 

b 3      8        n 

p      ,  2^1/2 

.   I  r  .i.  .   , .  2   1 v - 

h' a 3 

re     ii 
= ± . dB M8 + c) " ^B J 

-" = mf = —- - -——-^ 

If IL, la very larre the two surfaces conform In two dlrec 
c/d

8 i tlons. If not, -s—-T— is ne^H^ible In comparison to rra— and 
GS  + c ^ 

coso = T ^ •    The nilnua slitn has no significance and  so o  ap- 

proacheo zero In this case for the  small radial clearances re- 

quired in a precision mechanism  of  this  type. 

For an approximate solution we procede as follows.     The 

conformiriG direction Is the circumferential one.    We  assume, 

as an approximation to the pressure distribution in  this direc- 

tion,  a cosine  variation with anrj.e.     Thus  (aee Figure  18) 
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(122) p(*) = pm cos• 

Since the resu l t an t of t h i s d i s t r ibu ted load must equal 

^transverse 1 brg. w e * i a v e 

P t r . l brg. " J , „ . n«Pm c ° B * X i r " Pra IT \ 

or 

(123) Pm = ^?tr' * brg-^ v m TT dQ 

Next we compute the maximum contact pressure qo (-ĵ —) between 

two cylinders with curvatures in planes normal to their con-
1 1 1 1 forming direction of ̂ -r = — and —r = which are pressed toge-
R1 " R2 B 

ther by a uniform force per unit length in their conforming di-

rection of pm (ĵ -). This gives 

(124) q « 
2 p m 

o n a 

where a is the (small) half width of the (oeformed) rectangle 

of contact and is given by 

- 4 p R _l/2 
(125) a = T 2—2 

TT E. J 

- 90 -



and 

[125) ~r = V 
R R. R, 

while Eo Is computed from Squat Ion 131 Page 101, SECTION IV. 

'See for example Tlmoshenko and Goodier, PP. 381-2.) 

Finally we ccnalder that the value of q calculated In 

length of p calculated from P. . and d as above) Is 
Hi It , | D rg • s 

a good approxlnation to the maximum value of contact pressure 

a that ictuEl .7 exists. Because of the 3.1100th variation of -o 
p with * and the reas0r.ablsr.e3s of the assumed cosine dis-

tribution, ths writer feels that this solution will give 

results of ordinary engineering accuracy, I.e., no greater 

error will te ntroduced than tnat due to tolerances on Rg 

or estimates of E êariri,- *or example. 

Equations 123, 124, and 12'_> can be combined to give an 

expression for the minimum value RQ .or R^ . if we r B min. • o min. 
want to allov Cor the possibility of the shaft having non 

zero meridlar curvature) in terms of the transverse loaa, 

?t^ j r̂g end the material properties. This gives 

ar. equivalent cylinder of ? J.rvature t h i s manner fo 

onto a plane of curvature - -- 0 by a uniform load per unit 

U27) R o minimum ""5" 
n -o a 

4 ^tr.l brg. 
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The differential friction torque, dTfr , Is 

d 

Summing up all  these differential  torques frorr  *  =*  - S 

to * « ft,   and  using Eq,   123     to eliminate p    f.lves 

(128) Tfr.lbrB. 
■f       .    /'o 2 

p^y-^-i     u COB* d* n 'm 

" u htr.   1  brg.'T-^n- 

In this analysis the meridian section of  the bearing has 

been assumed   to be  convex with Rg as Its radius  of curvature. 

This effectively gives the  shaft  a  simple  support,   i.e.,   one 

not capable  of applying an end  moment.     If Rg is increased 

so that the  shaft and beai 'r^  co iform  l.n the axial direction 

also,   then the bearing la capable  of exerting  an end moment 

on the  shaft,   and  for a given d     the  shaft becomes  atlffer. 

While  this Increase  In stiffness ia  an advantage,   it would 

be balanced  out by  two disadvan cages: 

1.    Instead  of theoretical  line  contact in  the  undeformed 

state and  contact over an area with one small dimension in 

the deformed  state,   there  is theoretical area contact.     The 

usual effect  of this is to increase   the number of  small sur- 
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face  Irregularities that are  elastlcally   (say)  pushed  out  of 

ehe way each revolution and   to  thus Increase  the  coefficient 

of friction. 

2.     When the bearing  Is exerting a bending moment on the 

shaft In addition to a net  transverse load,   the  normal forces 

producing friction are larger than the net transverse load 

by  twice   the quotient of restraining moment  over effective 

bearing  length.    Thus In Figure  19 the  ncrrnal forces on the 

shaft,  which produce  friction,   are Increased  from P.      ,  ^ ' tr.i brg. 

for the  simple  support  to P.      ,   , + X'CBX;.        for the tr. 1 brg. f— 
eff 

restrained  support. 

Thus  If a Journal bearing  Is used,   there  should be  theore 

tlcal  line  contact In the  unloaded state   (simple  support). 

Equation 128 shows that  the  smallest shaft diameter pos- 

sible gives minimum friction.     The  lower limit  on shaft dia- 

meter for this application Is about d       .       » .020 In.     (Any- 

thing less would not be  stiff enough.)    For a transverse  load 

on one bearing of P.     ,  , ^ 4.43 lb.     (sec  Page  124)  this 

gives an average shear atress  of 

3 = ^1 brg, ^ Jk43     =  lk)l000 pal 
8 ave-   .785 da

2   /.783/(.020)2 

9 

For a bending arm (see Figure 17, P. 84j of one diameter the 

nominal bending stress at the fillet Is 
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FIGURE XIX 

SIMPLE SUPPORT 

Shear = F 

B 

B 

Shear = F 

tr. 1 brg. 
tr. 1 brg. 
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tr. 1 brg. 

M. rest. 

B 
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rest, 
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M rest, 
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DIAGRAM SHOWING INCREASED NORMAL 

FORCES WHICH OCCUR WHEN A SHAFT 

SUPPORT CAN APPLY A BENDING MOMENT 
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nom.  bendltus      „—? (3.lt)( .020)3 

While   thla hl^h nominal bending streas  is not desirable,   it  is 

not  completely out  of  the  question either.     However,  we  use 

d    =  .025 in. s 

in the  calculations  that  follow,   tentatively  assuming  that 

the  increase in friction  torque la more  acceptable  than the 

difficulties associated with the smaller shaft.    Thus with 

typical values of 

p =11  in lb   iP 12^4) 
tr.1 brg.   ' -  •    '   ; 

d3 = .025 in.  (P. 95) 

q = .iJ^) (285.000) = 242,000 psi (arbitrari- 

ly reduced 15% because of the larger nominal size, see PP. 106 

and 134.) 

M » .17      (P. 122; 

we have 

d 
Tfr.l brg.  ^  U rcr.l brg.      T^n' 
typical 

=   (.17;(4.43)f .01592) 

-   .0120  in.   lb. 
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Thle dees not compare too unfavorably with the friction 

torque of a vee Jewel bearing that is turning under its rated 

axial load ( .00825 in. lb. on P. 123 , but the present torque 

acts during the entire flight of the projectile. 

(127) P. « A, E° ' 
"o ninimum ^2 1? , 

" % S 

= litliji x IO6)__M^ 
C3.14)2 (242,000)* (.025) 
((See P. 108 for EQ) 

= .0258 in. 

Using a straignt shaft gives 

Rn _,n = R - -•= .0258 in. D nln. o ir.ln. 

This is drawn approximately to scale in Figure 20 using a 

bearing lengch of 1.5 x d . The uinimum radial corner clear-

ance is then 

Mia. Rad. Cor. "31. = Pg r i r
 r l - cos ( s i n " 1 p- - ^— ) | 

B rain. " 

.0258 fl - cos (sin" 1 •??.£} 
L (.0258) 
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Minimum radial 
corner clearance 



- .0258(.313) 

=  .00807 In. 

which  la quite reasonable.     The approximate  half width of 

conuact la 

r4 p    R nl, 2 ,,p.  H    P.      n -l/^ 
n       \ m    01 4r     ü    tr. l  org.^ 

» n  E      j n E       a„ j " o OS 

a-     4       r(.0238)(4J{3)        l^2 

^^ I" (21   x   10b)(.025) j 

a =  .000395 in. 

This compares  to a =  .00i-jl7 as  the  radius  of  the  cntact 

circle  of a vee bearing under design axial  load   (P.   119). 

It Is  less  than the  other value because   the  other dimension 

of the  area of contact  is  finite and  about  one-half  the  cir- 

cumference.     The advantage  of a small value  of a here  Is  only 

in minimizing  the  required  smoothness  of  contact  surface. 

I.e.,   there  is no reduction in friction radius with    a    as 

for a vee bearing. 
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SECTION  IV 

CONTACT STRESSES IN CONvKii'iHONAL VEE JEWEL BEARINQS IN INSTRU- 

MENTS AND IN THE PROPOSED APPLICATION 

A•  Analysis of Contaet Stresses in a Vee Jewel Bearing 

Consider the vee pjvot and Jewel shown in Figure 21.  Let: 

P ° force pushing them together (lb.) 

R, = bearing radius, assumed spherical (in. ) 

R2 = pivot tip radius, assumed spherical fin.) 

E, = bearing modulus of elasticity (psi) 

E2 = shaft modulus of elasticity (psi) 

The stresses will be calculated using Hertz contact 

stress theory for two spherical bodies.  1 See Timoshenko and 

Goodier, Theory of Elasticity, PP. 372-377.) 

The two spherical surfaces deform so that contact occurs 

over a circle of small radius. 

Let: 

a = radius of circle of contact (in.) 

R,, R2 - radii of the balls, positive if convex (in.) 

v ,,   v? = Poisson's ratio for the  two materials 

Then   "Equation 219  of  reference) 
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FI3URE  XXI 

ANALYSIS OF CONTACT SThKSSES 

IN A VEE JEWEL BEAHi:; J 
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Cre;n fai    i'ecnu . .  ,  ,   C  VD  ration 

129) a = {¥*rl^ 
1   -   v. 

2 Llrt 
*1      R2 

Defining R    and  E    by ^ o     o ^ 

'130) i - l-  f 1 

R- '^1^2 

and 

'131) 
1   1 - vl  ( 

1 " V2 
IT ^ ~T;— + —E:— 
O       1 a 

and substituting Into Equation 129 t^lves 

(132; 
, 3P R ■ 1, 3 

o 

The pressure distribution ever the  circle  of contact  Is hemis- 

pherical with a maxlmuin pressure  at  the  centpr.     Let 

q    = maximum pressure  on contact areaipsl) 'o 

Then   (Equation 218  of  reference; 

(133) qo - fj 
2na 
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Points remote i'rom the contact area '.say the centers of thft 

balls or In this case the deflection of the gear with respect 

to the case due to pivot deformation) approach each other by 

a  Inches) where «Eq. 219 of ref.)  i Is ^Iven by 

(13^)    a = ( ^yr- 
i 

o   o 

Uslnc Eq. 132 gives 

a2 
(135)    a =■ |- 

o 

The maximum shear stress occurs  at  a depth below  the 

surface of about   .47a   (See P.   376 of Timoshenko and  Goodier 

or P.   hl-2 of  the  Handbook ojT Englneerlrig Mechanics. )     and 

for Polsson's rat^o of  .3 for both materials Is riven by 

^36) Tmax. = -31 qo 

where 

1-    = maximum shear stress ipsj . ) max. 
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These formulas assume: 

(1) That    a    la small compared to|RJand|R2| 

(2) That the material remains elastic 

In order to determine the allowable material properties 

(In particular  T  Ä    ) we  consider loads and  sizes that are max. 

the  limits of conservative  fJesiirn practice. 

The Richard  H. Bird & Co.,   Inc.,  Catalog of Precision 

Jeviel Bearings,   states: 

The glass Jewel can be  used  successfully where  the 

weight of the moving element  Is of the  order of 750 

milligrams or less.    Sapphire  Jewels should be  considered 

when the weight of the moving element exceeds  this amount." 

"Hard Glass - 

Young's Modulus   -  12.7 x lO""6 psl." 
vobv'i Aisly  a misprint) 

"Synthetic Sapphire  - 

Corapressive Strength - 300,000 psl. 

Maximum Bending  Stress  - 9^,000 to 

100,000 psl.    Varies with angle of 

stress." 
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The dimensions  of a typical  standard     lass vce  Jewel   ire: 

"O.D.  • .070 In. 

Thickness «-  .OkO In. 

An^le - 80°  (total Included) 

Depth of Vee - .012 - .018 In." 

The Bird  catalog also states "A radius ratio   (jewel 

radius to pivot radius)  of 2.5 or 3.0 to 1 Is acceptable." 

In addition the catalog of the Industrial Sapphire Co., 

Quakertovm,   Pa.   lists: 

"Synthetic Sapphire   - 

Compressive Strength - 300,000 psi. @ 770P 

Young's Modulus - 50 to 55 x 10     (dependent 

on position of crystal C-axis) 

Modulus of Rupture  - 

300C  - 40  to 130,000 psi. 

5400C  - 23,000 to 50,000 psi." 

The Bird  catalog also lists as Its standard  sapphire 

vee Jewel with the largest radius K^: 

"Part No. RB 303035 

O.D.  =  .120 in. 

Thickness = 0.125 in. 

Angle = 110° + 5° 

Radius «  .009/011 in. 

Depth «  .030/.035 In." 
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Prom this llniltea information we Infer that the limits of 

typical practice are: 

For Glass 

E-, = 12.7 x 106 psi. 

lb. 
mg. plimitlng 750 mg. x ̂  - I Q 5 

— .00165 lb. 

R1 typical " * •004° ln" 

R2 typical = •COi5 in-

{Take v = . 3 and assume E? = 30 x 10^ psl.) 

For Sapphire 

*0 limiting = 300,000 pel. 

E1 typical " 52.5 x 106 Psl. 

R1 typical ~ " '030 In. 

R2 typical = -0°35 in. 

T̂ake v = .3 and aesume Eg = 30 x 10° p:ii.) 

Ualns the formulas above gives: 

For Glass 

1 __ 1 , 1 1 , 1 , „ 1 
^ ~ " I *2 " 0040 = l6'7 ° 7OT2TO 
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1 1 - V,     1 - V. 

'ir~ L . u . .32)[—i + -.. i  1 

30 x 10      12.7 lr •^ i 

9.79 x 10 
6 

a = 
4 E  " 1  (4)(9.79 x i.'5)  J 

!/'• 

r .303 x JC'"'
12

J 
1/3 

= .0000672 In. 

a   .0000672  . J72   .I.I.O / WJ v. ., v    =   XXie- - -rr— ^ .0448 (which Is amail enour^1 

K0 .00it> L^ 2 

a  - a2 

IT 
;.Ö72 x  1'j     ) 

2.4 x  ".0"J 
= 1.8: x 10"6 In, 

qn limiting 
typical 

3:p 11m. ■ .3)(.üQl6S) 

2Tr a1' 2} (3.14).'.672 x  10 ̂ TT 

- 174,000 pal. 

.oc 



V x . limiting = -31 % 11m. " (.31)(17*.000) 
typical 

= 53,900 psi. 

The smallest radius Rg, and therefore the largest qQ llmltlnL 

for a given load and Rx is R0 = .0012 in. This corresponds 

to a ratio of 'oQ-fg - 3.33 which is Just outside the limit-

ing range of 2.5 to 3. Using thi3 value ox Rg gives: 

1 1 , 1 1 , 1 
TT = R7 + = 7SST2 + ~ 5*3 " 7TJGT7TH 
o l d 

a = (.672 x 10~4)[ ]1/3= (.672 x 10"A) (. 89^3) 

= .0000595 

q AU4 174.000 174.000 C 1 7 n n n ^o limiting = — — = —1—£ = 217,000 psi. 
extreme (.8945) 

Thus q ,. 4., » 200.000 psi. is reasonable for glass with ô limiting 

a hardened steel pivot. 
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For a Sapphire Jewel 

11,1 1       ,        1 T^ 1  
IT = R^ ■f H^ " a5ü3F ^ -T3TÖC) ' löb = -^537 

^. (1  . v2)  r^ + ^ j.  d .  .32) 

r    i       + i '* 
' 30 x 10^     52.5 x 10b- 

.91 E  L. 
19.11 x 10b     21 x T? 

In this case we  take q    umitlnß as lcnown  ^at something 

slightly less than 300,000 pal:   say 285,000 psl.) and  solve 

Equations 132 and  133 for P. 

H  ^2 r3   o^ 

^37) ^limiting 
r3 ^ 

1mlting 

2 

(4)(21 riOb;J _ [1.92 x 10'^]' 
^ (3? 1.00537^.] r_   _      _   .1Ch2 

rüi 
(2)(3.14)(285,000) 

20 
^66 x ^    =  .00734 lb. 
4.7 x lO"10 

T ryO 

^   r1.67$ * lO-6n3 



. :ii3xC.JL Tecixiologj C o r p o r a t i o n 

op R 1 / 3 1/ 3 
a ={ „ , °) , r (3)1.00784)1.00537) "| 

Eo - ( 4 ) (2 . x 10b) 

r _i2 "|l/3 = [ 1.502 x 10 i£i 

= .0001145 In. 

H' ~ = *0327 (which is small enough) 

2 
a = » (1.14̂  x 10" ) = 2.44 x 10'6 in. 

o 5.37 x 10~J 

As a check, 

= -2£g. = —^1.5)(.OOf84j = 285,000 psi. 
O r. ̂  Jl ^ 

Q 0 o -
n a (3-14)(1.145 x 10" ') 

Thus f o r a l i - n i t i n g s a p p h i r e Jewel p r e s s u r e , q . . . 
^o limiting 

= 285,000 psi. and for the standard bearing with the largest 

radius of curvature (minimum stress for a given load) the 

ratio 

^limiting sapphire .00784 ,, „r. 
^limiting glass " " 7 5 

Estimation of Loads on the Bearings 

In order to calculate the loads on the bearing in the 

projectile it is necessary to know the maximum axial and 

radial accelerations of the pivoted mass. 

- i no 



.xt iiQi.'.J. ' i ' j ( i . j± ^ v >r >C x dt&JLot* 

Let: 
— t 2 a = axial acceleration of e.g. of shell (in./sec ) 

JJ = ang. vel. of shell about its axis (rad./sec.) 

I = lead of rifling (in./rev.) 

P - gas force on 3hell, average (lbs.) 

A = area that gas pressure acts upon (in. ) 

P = gas pressure, average (psi.) 

Vi = weight of shell (lbs.) 

I - moment of inertia of shell about ita axis 

(lbs. sec2 in.) 

r = outside radius of shell (in./ 

b = radial distance from centerline of shell to 

centerline of a shaft in the mechanism (in.) 
O 

g = acceleration of gravity in./'sec. ) 

L <* length of barrel (in.) 

v = axial velocity of center of gravity of shell 

(in./sec.) 
aradial ** radial acceleration at the centerline of pi-

p 
voted shaft (in./'sec. ) 

Use the following as typical data: 

W = 35 lb. 

P = 17,000 psi. '̂ assumed constant) 

r « 3 in. 

I => 12C in./1.5 rev. = 80 In./rev. 

L - 120 in. 

b - .375 in. 
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Then 

A = nr2 - (3.l4)(3)2 = 28.3 In.2 

To calculate the shell moment of Inertia assume that all its 

mass is concentrated at a distance k = 2.5 in. from the shell 

centerline. Then 

Equating the work dune on the shell in time dt to its chance 

in kinetic energy (assuming that losses are taken care of 

by the choice of P) gives 

PAvdt « | | [(v + dv)2 - (v)2] + | (| k2) 

But 

uu = v and du> = dv 

so that 

PAdt = | fdv + k2(y£-) :2(|I)" ] 

- Ill -



or since a - ^J- 

(136) a axial av PA 

W  !   1 + 
V 

kl^nll-J 

The raaximum velocity   (muzzle velocity)   Is 

and  the maximum angular velocity   'the  apln speed during flight) 

is 

The radial acceleration cf  the pivoted mass durlnc flicht 

Is then 

(lJ*1' arad. -  Kax.' b 

Using  the assumed  typlc.il values gives 

aaxlal    ^ PA ^_ ^17,000) (28.3)   
Z w[l  f k^^   ' ;33)  ri + 2^16^8^. 

■'.' 80' 

13,300 
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and 

7max.   =  (2a L)1/2 -  (f2)ri3,300 x 3Ö6)(120)) 
1/2 

33,300 ln./3Pc. 

',920 I't./sec. 

which seems reasonable as a muzzle  velocity 

UJ, 
2r 6.28 

max = vmax.T  "'  ^>100)  "W :   2'760 ^ad./sec. 

aracMal  =   ^max.^b =   :2'760)2   ^)  = 2.85 x  106 

In./sec. 

Lradlal    =: 2^830,000 ^ 7 ^00 

In  order to calculate   the pivoted  w?icht assume  that  a typi- 

cal gear has: 

O.D.   -   .383 In.   - D 

Thickness  =   .0242  In.   -  t 

Wt.  Density  =   .3  lb./1.n.     --- y 

Tlien the gear weight  =.Y)   (volume)   -   (.3) (.785 x   .3^{.02h2) 

Typ.  gear wt.   -   .OOO833 lb. 
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For the heaviest gear use: 

■:■ J   : avi.-n 

O.D. « .4496 In. 

t ° .0315 In. 

Y  -   .3 lb./in.3 

Heaviest gear weight =  (.000835)[ ■^f X^IH^   J =  •0024 5 
lb 

Allowing for pinion and  L,haft weight rives. 

"pivoted  typ.   ' •0012  lb-     (3a^ 

«pivoted max.  - ■00^ lb-     ^ 

The axial  load  P applied  to the aft.- bearing is  then 

(142) Ptyp!   « Wtyp>  ^=  (.0012)(13,300)  - 15.95  lb 

or 
a 

Praax.  ""max. T-  1-0030); 13,300}   - 39-9 :b 

Prom Equation  132   ffor a fixed  R    and  E^   ;r r-quivalentlly o ^ 

for a given bearing) 

r pVl/'3 
('143) a    =   v)      * 

'where primes denote ioada and dl;aeii3ions in tin;  P'.'cjectlle 

and no primes denote these quantities in typical insturments 

with limiting loads. 

Similarly from Equation ITf 'for a fixed R and E ) 
o     o 
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r p'   -1/3 

o o       P      j 

Since 

r  PtVD     -v1^       iR QR     i/S 1/3 
[r^-]   =(-^754)     =^035)     =12.68 

(? = .00784 lb. for sapphire bearing 

with the highest rating) 

the maximum contact pressure In the bearing would he 

1  x/-^ 

%  typ. =% ' r >   = (285,000) (12.68) 

3,610,000 psi. 

(See P. 108 for qo) 

which of c urse  Is exces3lve. 
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B.     Required Size  of a Vee Jewel Bearing That Can With- 

stand  The   Axial Acceleration. 

From  SECTION IV A,   i .   101  we  have 

O 1 cf 

o 

(131)       4  = —^      -*-  -.:E-^- 

O -5     P     R 
(132) a3^^? 

o 

a33)     % = ^ 

In these  equations we  can  regard  the materials  and  load as 

given and   then solve fcr the  required  sizes. 

Using  the strongest  combination  (sapphire  and  hard  steel; 

we have 

l    = L~..6      (Page  108, 
Eo      21 x 10 

q    ..  ...       - 285,000 psl.     (Page  108} Ho limiting st * & / 

Ptyplcal ' 15-95  lb-'    Pmax.  = 39.9 lb.   'Pa^e  114) 
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Taking the ratio of   !R,     to ' RJ   as (Page 105) 
•    JLi >     Ci 

i'Jves for R o 

I in =^0§5' 2-86 

(^5) R0 = A^-; = «x -^ 1       2 1+4 

= Ri rr^roicio = - •538 Ri i + 
.0035 

Eliminating a between 132 an! 133 and solving for R 

gives 

1/2 
ä      ,3/2 P1' " Eo 

0   ^ •^'    a 3/2 4o 

or (using 145) 

j.   -a 3/2 P1'72 E^     Rn 
(147)    R,^) (^    —3/-2

0 (1+Hi) 

^o 
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.44  P1/2  E R. 
(147)        R, - •     372    -g ( i ^RJ) 

Using  the  numerical valuer above 

R ,  (.^;U^93)1/2  (21 x 106)(1 - 2.86) 
"l typical ^ 5. 2 

(.285 x lüb) 

= -  .452 In. 

As a check 

- 1/2 1 -2 
Rl typ.  " Rl[ F J     =  (-01^  r iüÖ7^  y   = -  -^  ln' 

where  P =   .00784 lb.  for the  sapphire bearing with the high- 

est rated  load. 

Rlmax.  =  ^   -010)  ^Ä]1'2'  -  •^ln- 

Ro typ. ■= " Rl  typ.   ^538) "  (-^X.SSS; =  .243 In, 

Ro max. = - Rl max.   (-538) = (.7l4)(.538j - .384 in. 
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-4#--2^   --^ein. 2 typ. 

1 max. .71^        ocn 4„ R 1 max.   _    .71^ 
2 max. 

6 ^^ 
=  (.1381 x 10b) 

.00517 in. 

P^P-  =  <0?^i7    = .0328    (See P.   109 for a check) 
R2 typ.     •158 

which is  small enough. 

As a check and in order to see how a varies we have from 

Equation 133  (keeping qo fixed by adjusting Ro) 

^yp.  = ^)1/2- ^'1/2(-000^) 

(148) =  (45.2) (.0001145) 

.00515 in. 
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C. Friction Torque Developed on a Vee Jewel Bearing 

That la Required to Allow Rotation During the Axial Accelera- 

tion Period 

Neglect the effects of the transverse loading for slm- 
2 

pllclty since it is due primarily to w b rather than ab 

(a » ?rr)(Bee ?•  ^3)*    T^e transverse loading becomes signi- 

ficant near the end of the axial acceleration period and re- 

mains significant during flight.    It is therefore treated 

separately. 

The deformed surfaces are essentially plane with a hemis- 

pherical pressure distribution given by 

„ 2 -1/2 
(W) q(r)  « q    fi - IL ] 

a    J 

where: 

Letting 

r is the variable radius  (in.) 

a is the outside radius of the contact circle (in.) 

q    is the contact pressure at the center (psi) and 

q is the contact pressure at radius r (psi). 

li » coefficient of friction 

dT fr = friction torque on an annulus of radius r and 
thickness dr (in.  lb.) 
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and 

Tfr - Total friction torque  (in.lb.) 

we have 
p 2  _l/2     9 

dTfr " ^ <»(r)(2,Tr dr)^) » ^UQo [ 1 ' ^ J        r dr 

integrating from r = 0 to r = a gives 

—• ■• 1      2 1/2 2 
T^ - 2nuqn a

3 f* [1-^1   ^ d(^) (See Pierce 
^o     ^    ^     #145, P.21) 
a *" 

(150)   Tfr - M0 a
3 %- 

Using Bq. 133 to eliminate a gives 

, - 3/2   1/2  p3/2 
(151)   Tfr. (J)(|)   (n)   n^ 

^o 

Thus If the bearing must rotate while axial acceleration is 

occurring, the friction torque goes up as the *• power of axial 

load P for a fixed design q0. 

Por the largest radius standard sapphire bearing under Its 

limiting load we have (P. 108) 
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and 

P - .00784 lb. 

q0 - 285,000 pal 

Taking u « .17  (half way between .15 anä   .19 Hated as typi- 

cal In the Richard H. Bird  catalog) gives 

1    g 3/2        1/2      3/2 
Tfr.  largest      "  (H>^        M       ^75 
std. brg. qo 

under its maximum load 
3/2 

.  (.407)(.17)4^Z8iLT 

(534) 

= 8.98 x 10'8 In.   lb. 
As a check 

a3 = 1.502 x 10"12   (P.  109) 

Equation 149 gives 

2 2 
Tfr " uC1o a3   TT =  (.17)(285,000)(1.502 x ID"12) ^L- 
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-   8.96 x ICT8 In.lb. 

If the load Is increased to Pt   » 15.95 lb 

fr. bearing reqd.    fr largest v    ' 
to withstand ace.    std. brg. 
(typical wt. shaft) 

with q kept constant. This gives 

3/2 
Tfr. typ. = (8-98 x 10-8)( -^ ) 

(8.98 x 10'8)(9.19 x 104) 

.00825 in. lb. 

for the typical shaft and 

T'fr. max. -(^xlO^H^) 
3/2 

(8.98 x 10"8)(36.35 x 104) 
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T*« »o*. " .0327 In. lb. ;r. max. 

for the heaviest shaft.    In order to decide whether these torques 

are acceptable or excessive, we perform the following rough cal- 

culations. 

The shafts are driven from the mainspring shaft through 

pinions on the shafts.    Using a pinion radius r   t       - .058 in. 

and rp heaviest shaft " ao6   8lve8 a8 the tangential force 

required to overcome only its own aft bearing friction: 

p „ Tfr. typ.    ^ ^0082^ ,    ^ lb rtan.  typical rp typ ^$30       ,l^d 1D' 

and 

P Tfr. heaviest   .0327   ona  IK 
pt«n. heaviest '  rp heavle8t " TT^" ' -^ lb 

These forces may be compared to the total transverse force 

acting on the shaft due to spin of the projectile: 

inertia 
typ. max. 
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and 

'trover..     " («heavLst) ^JÜSL . (.0030)(7.400) 
Inertia 
heaviest max. 

- 22.2 lb.   (See Pages 113 and 114 for 
these values.) 

Therefore these friction torques are not excessive In the sense 

that they will cause excessive bending stresses In the shafts, 

since the bending effect due to the friction torques Is so 

much less than that due tc    the transverse Inertia forces. 

Before accepting the possibility of rotation In a bearing 

during the axial acceleration period we should consider that 

a, the radius of the contact circle. Is 43.2 (see P. 119) 

times as large here as for the largest standard bearing. 

Thus for the same angular speeds, the rubbing velocities are 

43.2 times as large.    This may not be acceptable. 

So consider the situation from the point of view of re- 

quired mainspring energy.    The time    t    (sec.) that the pro- 

jectile spends under acceleration ( In the barrel) is (see 

PP.  110 and 112) 

[ _£  f/2. r (2)    t120)        f/2. .00683 sec. 
L5av. axial J        L (386)(13,300)  J 

If the shaft is rotating at n rpra it makes ££ revolutions while 

under axial acceleration.    The frlctlonal energy lost is then 

- i?^ - 
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Efrlctlon - (Tfr)  O    ln-  lb- per Bhaft- 

Assuming a steel mainspring with 5056 energy storage efficiency 

and a maximum design tensile stress of 180,000 psl. gives as 

the energy per unit volume 

s        2 2 
U/vol.    =  (.50H1/2) -,^~=  (^3) (180,000) 

15 30 x 10° 

= 270 In.  lb/in.3 

Assuinlng a mainspring volume of 80^ of a cylinder i Inch long 

and 1.4 Inches outside diameter gives as the available stored 

energy 

Ustored= (~T7H.3)(.25)(.785)(1.4)2 

- (270)(.308) - 83 In. lb. 

The energy lost In a shaft of typical weight Is 

*       ,. m   nt ^ (.00825) n (.OO683) 
Efr. typ. * Tfr. HT "     66 

= .94 x 10 x n In. lb. per typ. shaft 

(See Pages 123 and 125 for these values.) 
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Assuming a speed of 20 rpm for the fastest typical welßht 

shaft gives 

Bfr. fastest typ. = '^ x lo6 x 20 ' 'OOOOlQQ  In. lb. 
wt. shaft 

Clearly then energy loss during the Initial acceleration per- 

iod Is no problem. 

However, the product of muzzle velocity (2920 f.p.s.) 

(P. 113) and barrel time (.00583 sec.)(P.125) Is 20 ft. (two 

barrel lengths). This represents a maximum error In range If 

we have assumed that the timer started when firing was Ini- 

tiated and It actually starts when the shell leaves the bar- 

rel. Thus while the calculations above Indicate that a bear- 

ing that can withstand the axial acceleration loads can also 

allow rotation during the axial acceleration period, as a 

practical matter this may not be desirable. 

Priction Radius of Vee Jewel Bearing 

Since 

(150)   T^ - u% a3 g- 

and the normal force is 

2n qrt a 
(133)   P ^L- 
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If we define the friction radius r-, (in.) by fr 

(153)   rfr - §£ 

we have 

(154)   rfr - ^ a " -588 a - .294 (2a) 

for this hemispherical pressure distribution. For 

a - .00516 in. (P.119) 

rfr - .588 (.00516) «- .00304 in. 

which is extremely small for a shaft and bearing subjected 

to an axial load of 15.95 lb» 
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D. Bffect of Trangverse Load Upon a Vet Jewel Bearing 

Consider the enlarged vie* of the vee bearing shown 5.n 

Figure 22. AsBume that the bearing is exerting a force on 

the shaft that supplies all the axial acceleration and half 

of the transverse acceleration. Prom PP. 112 and 113 

5axlal " "«^ 
e 

{1)( W Mtt-) . (1)(7.400) . 3J7OO 

Thus the resultant force makes an angle a with the shaft 

centerline given by (Pig. 23) 

4.. -1 ? ^ad. max.   «.«„-1 3J700  nc coO a - tan  —= « tan  13*300 "  iPoS 
axial 

Assuming temporarily that the forward bearing only applies 

a transverse restraint to the shaft, and that the resultant 

force exerted by the aft bearing remains normal to the bear- 

ing surface gives the geometric picture shown in Figure 24. 

The pivot rises and remains parallel to its original position 

so that contact occurs at the angle a to the shaft center- 

line. In terms of R^  and Rg (P.99) we can calculate the off- 

set e(in.) and the rise r (in.) 
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FIGURE XXII 

VEE JEWEL BEARING 

FIGURE XXIII 

a axial 

rad, max, 

ACCELERATION VECTORS 
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FIGURE XXIV 

Offset e (In. ) 

VEE JEWEL BEARING SHOWING OFFSET 

DUE TO RADIAL ACCELERATION 
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t.     : i. .   i    1^1    I..  C.J^j.'   K^TfJ^l'L    .K. 

e - (    Ri      -   Ro    ) «Ina 

r - (   JR^     - |R2|   )(1  - cosa) 

Numerically we have    (see PP.   118 and 119) 

e -(  |RJ   - |R2|   } Blna - (.^52 - .158)(1 - cos 15.53°) 

=  .0798 In. 

r -  ( JRJ   -  (R2|   )(1 - cosa) 

= (.452 - .158)(1 - cos 15.53°) 
»  .01076 In. 

Since these are both excessive,   consider the helping effect 

of friction,  which was Ignored In the above calculations. 

Coefficients of pivoting friction are given In the R.  H. Bird 

catalog as varying between  .15 and   .19.    When we are relying 

on the friction to help withstand the transverse load It Is 

reasonable to use u =  .12 as a conservative design value. 

The corresponding angle of friction ♦ Is then 

tan'1 n « tan'1    .12 • 6.85° 

■' ■- '•» 
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and the resultant force would act 6.85° from the norraal to 

the contact surfaces. Since the resultant force must act at 

an angle a ■ 13.53° to the shaft centerllne, the contact angle 

with friction, otf.-,, is given by 

^i a - » - 15.53° - 6.85° - 8.68° 

and 

e - ([RJ   -   JR2j) 8lnafr - (.452 -  .158)(sln 8.68°) 

- .0443 In. 

r -  ( |RJ    -|R2J   )(1  - co8afr) 

- (.452 - .158)(1 - cos 8.68°) 

- .00335 In. 

This offset Is still completely unacceptable. It has been 

computed using the large axial load of the Initial acceleration 

period and the transverse load that exists during flight. 

It should be noted however, that as the axial load decreases 

the offset Increases still more. 
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E.    Summary of ConcluBlonB About the Suitability of Vgg 

Jewel Bearings 

The axial load required to accelerate the mass carried 

by a typical shaft of this raechanlara Is about 15.95 lb.     (P.  114) 

while  the atrongest vee Jewel bearing typical of standard 

commercial practice can operate under a load of only .00784 lb. 

(P.   108).    Since the required radius of curvature increases 

with the square root of the    axial load for fixed elastic 

properties,  radius ratio,  and limiting stress (see Equation 

147),  this means that the Jewel radius of curvature must In- 

crease by a factor of 45.2 to become  ,452 in.   (P.   118).    Th« 

radius of the contact circle also Increases with the square 

root of the load  (P. 119) and becomes  .00516 in.    on the typi- 

cal shaft. 

Vee Jewel bearings with these increased radii and asso- 

ciated dimensions are not presently made commercially.    It 

does not appear that there Is any severe technological limit 

associated with this increased  size, but rather that there 

is no present commercial demand for such bearings.    Aside from 

greatly Increased cost the only design limit that the writer 

can see associated with the larger bearings is to require a 

somewhat lower (say 15^) design maximum compressive stress to 

account for the greater chance of Iraperfsctlons and the ef- 

fects of higher rubbing speeds in the larger bearings. 

The friction torque of these larger bearings,  even while 

operating under maximum axial load,  is still very small, pri- 
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marlly because the radius of the contact circle Is only .00516 

In. (P. 119) and the effective friction radius Is then only 

.00304 In. (P. 128). 

The severe ?Imitation on the use of the vee jewel bear- 

ing In the present application Is the presence of relatively 

high transverse loads of approximately 4.43 lb. per bearing 

(?. 124) during the time of operation due to the spin of the 

projectile, and the necessary offset of at least some shaft 

from the projectile axis. An excessive shaft offset under 

load Is required to change the direction of the normal to the 

contact surfaces from Its original direction parallel to the 

shaft axis to a direction with a component transverse to the 

shaft. Thus« neglecting friction, and favorably assuming 

that the Initial high axial force remains, we get a calcula- 

ted offset of .0798 In. (P. 132), while considering both 

friction and the favorable effect of high axial force, only 

reduces the calculated offset to .0443 In.  (P. 133). Both 

of these values are excessive In the precision type mechanism 

under consideration, and both would have to be Increased to 

account for the reduction in axial load after the initial ac- 

celeration period. 

Thus to summarize, vee type bearings couxd probably be 

made to withstand the axial loads and to give low friction 

In operation, but have to be rejected because they cannot apply 

sufficient transverse constraint to the pivoted parts. 
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SUMMARY AMD CONCLUSIONS 

In this section the results and conclusions of the inves- 

tigation are summarized and briefly discussed. More complete 

discussions are given in the body of the report. 

In the first part of Section I, formulas are developed 

for sizing bearings which have combined axial and transverse 

load capacity when axial load c .ntrols sizing. Ten cases are 
1 

considered as follows: 

Case I Plat beaming-uniform normal pressure distribution. 

(This bearing has no transverse load capacity but is included 

since its axtal load capacity serves as a convenient reference 

value arid since it can be used in conjunction with a Journal 

bearing) 

Case II Plat bearings with linear normal pressure dis- 

tributions. 

Case III Pull spherical bearings with a uniform normal 

pressure distribution. 

Case IV Hollow spherical bearings with a uniform normal 

pressure distribution. 

Case V Pull spherical bearing with a cosine normal pres- 

sure distribution. 

Case VI Hollow spherical bearing with a cosine normal 

pressure distribution. 

Case VII follow) torroidal bearing with a uniform normal 

pressure distribution, 

- 136 - 



General Technology Corporation 

Case VIII (Hollow) torroldal bearing with a cosine nor- 

mal pre»eure distribution. 

Case DC Hollow conical bearing with a uniform normal 

pressure distribution. 

Case X Bearing with theoretical line contact along a 

circle of latitude. 

In each of these cases an expression is derived giving 

the dimensionless outside radius ratio (the ratio of the re- 

quired outside radius to a reference outside radius as de- 

termined by axial load) as a function of the dimensionless 

geometric parameters that describe the bearing and the dimen- 

sionless parameters that fix the loading. 

As would be expected, the smallest required size for any 

shape occurs when the inner radius is zero, and the required 

size increases with increasing inner radius. In addition a 

uniform pressure distribution gives the smallest required size, 

irrespective of shape. The more realistic pressure distribu- 

tions, which drop off with increasing rddius, require a lar- 

ger size and do depend upon bearing shape. Thus for example 

we see that the shallow spherical bearing (a small, see P. 10, 

Pig. 3) requires a smaller size, under axial load, than its 

deeper (a large) counterpart. Figure 3 also shows that the 

deep hollow spherical bearing with a between 60° and 90°, 

and with a (reasonable) cosine pressure distribution, requires 

about the same size as a flat bearing with a (reasonable) 
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trapezoidal load distribution (^ » .3). Since the deep spherical 

bearing has transverse load capacity and the flat bearing does 

not, their similarity in axial load size for realistic load dis- 

tributions is a strong point in favor of the deep spherical bear- 

ing. An additional result of interest is that the deep torpol- 

dal bearing with a « 90° requires a larger size than the deep 

hemispherical bearing with a « 90°. 

Another interesting result is that with theoretical line 

contact (Case 10) the required size of bearing is only about 

three times that of a bearing of similar materials and design 

stressed but with theoretical area contact. This indicates that 

further careful consideration of bearings with theoretical line 

contact is warranted. 

In the second part of Section I, equations for the friction 

torque and the dimensionless friction radius ratio are developed 

for the 10 cases of the first part when the bearings are operat- 

ing under axial load alone. Since this operation occurs over 

such a short Interval, if it Is required at all, the choice of 

bearing shapes or parameters would not be Influenced very much 

by the requirement of low friction torque under axial load. 

However, the order of magnitude of friction torques in these cases 

is of Interest, and they are not excessive. 

i 
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In Section II the bearlnge of the first section are analy- 

zed when they are operating under transverse load.    Because 

the flat bearings cannot take any transverse load, and because 

one normal pressure distribution was much more reasonable than 

most others there are only four distinct cases.    They are: 

spherical bearings (hollow and solid),  torroldal bearings, 

conical bearings and bearings with latitude circle line contact 

In each of these cases formulas for the dlmenslonless bearing 

size as determined by transverse load capacity and for the 

dlmenslonless friction radius ratio under transverse load are 

derived.    Numerical values are calculated and It Is found that 

with the load magnitudes uned,  either axial or transverse 

load capacity may determine the required bearing size.    The 

one that controls depends upon the partlcuaar type of bearing 

and the value of Its geometric parameters.    This approximate 

balance of the size requirements Is good in that the axial 

load does not demand Increased size which will gl"e Increased 

friction when the bearing is operating under transverse load. 

Another result of Interest is that the deep spherical 

bearings (a «■ 90°) have less friction torque than shallow ones 

(a ■ 30°) of the same transverse load capacity and radius ratio 6 

(see PP. 66 and 67).    In addition the spherical bearings have 

somewhat less friction than the torroldal bearings of the same 

angle a and radius ratio ß (see P.  7^).    The conical bearing 

(P.  75) and the line contact bearing (P.  78) also have rea- 

sonable typical sizes and friction torque under transverse 
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load and furthur consideration of both of these bearings is 

warranted. 

In Section III methods of analyzing Journal bearings for 

contact stresses and friction torque in terms of load are de- 

veloped and some numerical results are obtained.    The tuo con« 

elusions of interest are that these bearings are feasible 

and that a simple support will create less frictilon than a 

restrained support. 
I 

In Section IV methods of computing contact stresses and 

friction torques for a vee bearing are presented. It may be 

noted that since the theory applies to a spherical shaft end 

in a larger radius spherical socket, a separate ball may be 

used to replace the shaft end. Design equations are developed 

for sizing these bearings under axial load and these equations 

are applied to Jewel bearings. The feasibility of using stan- 

dard jewel bearings under the axial acceleration loads is also 

investigated and it is found that bearings much larger tl an 

those that are presently made commercially are necessary. 

It is also found that these bearings cannot withstand the high 

transverse loads. Expressions for the friction torque are 

also developed for these bearings under axial load. 
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